martes, 23 de febrero de 2021

Diez buenas noticias sobre el coronavirus (un año después)

Hace un año escribí un artículo titulado del mismo modo Diez buenas noticias sobre el coronavirus. El objetivo era mostrar que la ciencia, el conocimiento y la cooperación son fundamentales para luchar contra la pandemia. No sabemos qué ocurrirá en los próximos meses y las nuevas variantes genéticas son motivo de incertidumbre, pero un año después el mensaje es el mismo: los avances de la ciencia nos animan a ser optimistas y a ver “la botella medio llena”.

1. Hay más artículos sobre SARS-CoV-2 y COVID-19 que sobre malaria.

Hace un año nos asombrábamos que en poco más de un mes desde que se notificaron los primeros casos ya había más de 164 artículos científicos en PubMed sobre el nuevo virus y la enfermedad. Ahora esa cifra se ha multiplicado por más de 600, superando los 100.000 artículos, más que los que aparecen bajo el epígrafe de “malaria”, por ejemplo. Existen registrados más de 4.800 estudios en curso sobre tratamientos y vacunas. Sabemos más de SARS-CoV-2 y COVID-19 que de otras enfermedades que llevamos lustros estudiando.

Puedes consultar:

The Medical Letter on Drugs and Therapeutics (Treatments considered for COVID-19).

COVID-19 Global literature on coronavirus disease, WHO.

COVID-19 Vaccine & Therapeutics Tracker.

2. Más de 200 nuevas vacunas.

Hace un año se destacaba que había ocho nuevos proyectos sobre vacunas contra el coronavirus SARSCoV-2. Según el portal bioRENDER son más 195 candidatos, al menos 71 ya en ensayos clínicos, empleando todo tipo de tecnologías: virus vivos atenuados, virus inactivados, subunidades de proteínas, vectores virales recombinantes, partículas similares a virus (VLP), DNA, RNAm, etc. Jamás se había invertido tanto dinero y había habido tanta colaboración para el desarrollo de vacunas entre entidades públicas, privadas, centros de investigación, universidades, farmacéuticas, empresas, ONGs. Algunos proyectos se han abandonado (como la propuesta del Imperial College London/Morningside Ventures basada en RNA auto-replicante, las de Merck/ Themis Bioscience/Institut Pasteur y Merck/ IAVI basadas vectores virales recombinantes, o la de la universidad australiana de Queensland que combinaba proteínas con adyuvantes), pero otras ya están autorizadas por la OMS: Pfizer/BioNTech y Moderna con tecnología RNAm, AstraZeneca/Oxford y Sputnik V con tecnología de adenovirus recombinantes y la china Sinopharma, con coronavirus inactivos. Al menos otras 20 vacunas están ya en ensayos clínicos de fase III y en los próximas semanas/meses podrán ser aprobadas, si los resultados son satisfactorios.

Puedes consultar:

Draft landscape and tracker of COVID-19 candidate vaccines.

Challenges in ensuring global access to COVID-19 vaccines: production, affordability, allocation, and deployment. The Lancet, February 12, 2021.

Coronavirus Vaccine Tracker (New York Times).

3. Las vacunas de RNAm son muy seguras.

Uno de los posibles efectos graves de las vacunas es la anafilaxis, una reacción alérgica que pueda llegar a ser mortal y que ocurre normalmente al poco tiempo de administrar la vacuna. Se han analizado datos del primer mes de vacunación en EE.UU., donde se han administrado más de 17,5 millones de dosis (exactamente 9.943.247 de la vacuna de Pfizer/BioNTech y 7.581.429 de la de Moderna). El Sistema para Reportar Reacciones Adversas a las Vacunas (VAERS, por sus siglas en inglés) ha registrado solo 66 casos de anafilaxia (47 con la vacuna de Pfizer/BioNTech y 19 con la de Moderna). Esto supone menos de 4 casos por millón de dosis o el  0,0003% de todas las dosis analizadas. Veintiuno (el 32%) de esos 66 casos había tenido casos previos de anafilaxia por otros motivos. No se ha detectado ningún fallecimiento. Si se compara con el número de casos de COVID-19, las secuelas que deja la enfermedad y el número de fallecimientos, el beneficio que suponen las vacunas supera enormemente los posibles efectos adversos, y permite afirmar que, de momento, las vacunas de RNAm son muy seguras.

Puedes consultar:

Reports of Anaphylaxis After Receipt of mRNA COVID-19 Vaccines in the US—December 14, 2020-January 18, 2021. JAMA, February 12, 2021.

4. Las vacunas son efectivas.

Israel es el país que mayor población tiene ya vacunada. A principio de febrero, más de 3,67 millones de israelíes había recibido la primera dosis de la vacuna de RNAm de Pfizer/BioNTech, desde que comenzó la campaña en Diciembre. Esto representaba cerca del 40% de la población del país. Más del 28% había recibido además la segunda dosis. Entre los mayores de 60, más del 80% había sido vacunados. Los datos preliminares muestran que la vacunación está siendo efectiva. El número de infecciones está disminuyendo de forma significativa, especialmente entre las personas mayores de 60. En este grupo de edad, ha habido un 56% menos de infecciones y un 42% menos de hospitalizaciones y un 35% menos de fallecimientos por COVID-19 después de la segunda dosis. Los resultados con las dos dosis son excelentes: de los 523.000 israelíes vacunados con dos dosis solo hay 544 casos de COVID-19, tan solo 4 casos de COVID-19 grave y cero fallecimientos. Estos datos confirman los obtenidos en los ensayos clínicos previos.

Pero no hay que irse hasta Israel, en Asturias el pasado día 15 de febrero se había sobrepasado la cifra de 2.000 personas fallecidas por COVID-19 desde el inicio de la pandemia. Entre ellas, había una gran proporción de personas con domicilio en residencias de mayores, donde el impacto ha sido muy considerable. Sin embargo, en estos momentos la situación comienza a estar relativamente controlada gracias a los esfuerzos vacunales dirigidos específicamente a las personas residentes y trabajadores que los atienden. El efecto de la vacuna queda de manifiesto al comparar la mortalidad entre personas mayores con domicilio en residencias (casi todas vacunadas) en las que desciende bruscamente y el número de fallecidos en personas con domicilio fuera de ellas (no vacunadas) entre las que aumenta considerablemente.


Y no solo eso, se acaban publicar los resultados de un estudio preliminar en Inglaterra en el que demuestran que la vacuna de RNAm de Pfizer/BioNTech es efectiva para prevenir la infección en adultos sintomáticos y asintomáticos, incluso contra la variante “británica” B1.1.7. 

Puedes consultar:

Patterns of COVID-19 pandemic dynamics following deployment of a broad national immunization program, Februery 9, 2021.

Vaccinations and the impact of COVID-19 – our continuously-updated data for Israel (Our Word in Data).

Mortalidad con coronavirus en Asturias, 2020 Informe #29: 17.02.2021.

Effectiveness of BNT162b2 mRNA Vaccine Against Infection and COVID-19 Vaccine Coverage in Healthcare Workers in England, Multicentre Prospective Cohort Study (the SIREN Study). The Lancet, February 22, 2021.

5. La confianza en las vacunas aumenta.

Después de más de 160 millones de dosis de vacunas frente a la COVID-19 administradas, la confianza de la población en las vacunas va en aumento. por ejemplo, se ha realizado una encuesta a 13.500 personas de quince países de Europa, Asia y Australia entre noviembre del 2020 y enero de 2021. En el mes de noviembre, antes de que los países comenzaran a aprobar las vacunas, solo cerca del 40% de los encuestados se pondrían la vacuna contra la COVID-19 y más del 50% estaban preocupados por los posibles efectos secundarios. Para el mes de enero, más de la mitad se pondrían la vacuna y el número de personas preocupadas por los efectos secundarios había disminuido ligeramente.

Reino Unido fue el país en el que más gente se manifestó dispuesta a vacunarse (hasta un 78% de los encuestados) y en España la proporción de gente dispuesta a vacunarse pasó de un 28% en noviembre a un 52% a mediados de enero.

Puedes consultar:

Trust in COVID vaccines is growing. Nature, February 10, 2021.

6. La respuesta inmune frente al virus dura al menos ocho meses.

Los test serológicos que miden anticuerpos frente al SARS-CoV-2 no refleja todo el potencial, la duración y la memoria de la respuesta inmune frente al virus. Conocer cuánto dura la respuesta inmune frente al virus es fundamental para determinar la protección frente a las reinfecciones, la gravedad de la enfermedad y la eficacia vacunal. Se ha comprobado que, aunque hay cierta heterogeneidad en la respuesta según cada individuo, en la mayoría de las personas en las que se ha analizado mantienen una robusta respuesta inmnune humoral (anticuerpos) y celular (linfocitos T), de hasta 6-8 meses después de la infección, independientemente de que sean leves o graves.

Puedes consultar:

Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science, February 5, 2021.

Persistence of SARS-CoV-2 specific B- and T-cell responses in convalescent COVID-19 patients 6-8 months after the infection. Cell, February 3, 2021. 


7. Nuevos tratamientos frente a los casos más graves.

Ya sabemos que la COVID-19 es mucho más que una neumonía. Se conoce mucha más de la enfermedad y, aunque no dispongamos de momento, de un antiviral específico que inhiba el virus, hay combinaciones de tratamientos que mejoran mucho el pronóstico y reducen la mortalidad de los casos más graves: antivirales, antiinflamatorios, anticoagulantes, corticoides, inhibidores de la tormenta de citoquinas, anticuerpos monoclonales, … Existen más de 400 ensayos clínicos en curso en los que se están probando distintos tratamientos y combinaciones. Por ejemplo, según el ensayo clínico internacional Recovery, la combinación de tocilizumab (un anticuerpo monoclonal dirigido contra el receptor de la interleukina-6, aprobado para el tratamiento de la artritis reumatoide) y la dexametasona (un potente glucocorticoide sintético que actúa como antiinflamatorio e inmunosupresor), puede reducir a casi la mitad las muertes en los pacientes más graves con COVID-19.

Por otra parte, el tratamiento preventivo con anticoagulantes en pacientes con COVID-19 hospitalizados, se asocia con un 30% menos de mortalidad a 30 días, y sin efectos adversos de sangrado.

Puedes consultar:

RECOVERY trial shows tocilizumab reduces deaths in patients hospitalised with COVID-19, NIHR, February 11, 2021.

Early initiation of prophylactic anticoagulation for prevention of coronavirus disease 2019 mortality in patients admitted to hospital in the United States: cohort study, BMJ, February 11, 2021.

COVID-19 Research Registry – Treatment (ASM).

8. No hay gripe

Existía una seria preocupación sobre cómo se iba a comportar el solapamiento de SARS-CoV-2 con otros patógenos respiratorios frecuentes en los meses de invierno. No se podía descartar una situación de “tormenta perfecta” en la que coincidieran SARS-CoV-2 con otros virus, como el de la gripe o el respiratorio sincitial, que causan bronquiolitis y neumonías y son responsables de frecuentes hospitalizaciones y muertes en determinados sectores de la población más vulnerable. Se había sugerido que el riesgo de muerte en personas infectadas por gripe y SARS-CoV-2 de forma simultánea era superior que en aquellas que solo estaban infectadas por el coronavirus, especialmente en mayores de 70 años. La coincidencia de varios virus respiratorios con el SARS-CoV-2 podría haber causado una auténtica carnicería en las personas mayores.

La buena noticia es que esta temporada la gripe y otros virus respiratorios han desaparecido, tanto en los meses de junio-agosto en el hemisferio sur como ahora en el hemisferio norte. No podemos descartar que esto pueda suponer quizá un problema el año que viene (las temporadas en las que la gripe causa mayor mortalidad suelen estar precedidas de temporadas más benignas), pero este año ha supuesto un verdadero alivio a los sistemas sanitarios.

Varias son las causas que pueden explicar este declive de la gripe. Primero conviene recordar que el SARS-CoV-2 y el virus de la gripe son virus muy diferentes. 

Es muy probable que el menor periodo de incubación de la gripe, la existencia de inmunidad previa, la intensa campaña de vacunación de este año, las medidas de confinamiento, disminución de viajes, uso de mascarilla, higiene, distanciamiento social, etc. hayan tenido un mayor efecto en disminuir la transmisión de este virus. Por el contrario, en la transmisión del coronavirus además influyen mucho más el efecto de los aerosoles, el papel de los superpropagadores y los asintomáticos.

9. Podemos seguir la evolución del virus a tiempo real.

El efecto que puedan tener las nuevas variantes genéticas del SARS-CoV-2 en la vacunación y en el transcurso de la pandemia es una incertidumbre.  Debido a que los cambios genéticos pueden tener un potencial efecto en cómo se comporte el virus, su análisis y seguimiento es fundamental. La buena noticia es que hoy tenemos la capacidad de seguir la evolución a tiempo real del virus y la aparición de nuevas variantes genéticas. Hay ya más de 260.000 secuencias del genoma de SARS-CoV-2 disponibles en las bases de datos. Esas secuencias provienen de otros tantos aislamientos obtenidos de muestras humanas desde febrero del año pasado hasta el momento actual. Aunque los cambios de nucleótidos son la primera fuente de variación genética del SARS-CoV-2, también se han detectado inserciones, deleciones e incluso recombinaciones.


Todo esto permite hacer filogenias (relaciones de “parentesco” entre las variantes virales) que pueden emplearse para hacer estimaciones temporales (cuándo surgen nuevas variantes), caracterizar cómo se extiende geográficamente el virus, reconstruir la dinámica epidemiológica dentro de una región y analizar cómo se adaptan a lo largo del tiempo. El análisis de las secuencias del SARS-CoV-2 no tiene precedentes, en la base de datos
GISAID (Global Initiative on Sharing Avian Influenza Data) son más de 580.000 datos de secuencias compartidas. Es la primera vez que se está siguiente a tiempo real la evolución de un virus pandémico.

Puedes consultar:

Insights from SARS-CoV-2 sequences. Science, January 29, 2021.

SARS-CoV-2 Proteome-3D Analysis (University of Cambridge).

CoVariants (Institute of Social and Preventive Medicine, University of Bern).

10. La pandemia a nivel mundial decrece.

No sabemos cómo se desarrollará la pandemia en los próximos meses. Dada la intensidad que ha tenido hasta ahora es probable que haya nuevas olas, pero quizá de menor intensidad. No sabemos cómo será una posible cuarta ola, ni el efecto que puedan tener las nuevas variantes genéticas que van apareciendo, pero la buena noticia es que a nivel global la pandemia en este momento decrece.

Quizá sea un combinación de varios factores: el virus se comporta de forma estacional, la población va adquiriendo cierta inmunidad de grupo por infección natural o por las vacunas, quizá el virus en ese proceso natural de variación y mutación va derivando a formas menos virulentas y se va adatando a su nuevo huésped. No lo sabemos a ciencia cierta, pero de momento sigue habiendo motivo para la esperanza.

miércoles, 10 de febrero de 2021

Maria Mitchell, la primera astrónoma estadounidense

Luchadora por la igualdad social y política de las mujeres

Una niña despierta

En 1818 nació en la isla de Nantucket (Massachusetts, Estados Unidos) Maria, la tercera de los diez hermanos de la familia Mitchell, parientes lejanos de Benjamin Franklin. Los Mitchell pertenecían a una comunidad cuáquera que creía firmemente en la igualdad entre sexos y la búsqueda de la independencia.

Su padre era profesor y tenía un gran interés por la ciencia. Era frecuente que pasara la tarde haciendo experimentos con su hija, para enseñarle conceptos como la polarización de la luz, usando una bola de cristal llena de agua colgada de una lámpara. A Maria le fascinaban estos experimentos. Su padre era además astrónomo y experto en ajustar y calibrar los cronómetros que llevaban los barcos para determinar su posición, algo esencial para los balleneros que tenían su puerto en la isla de Nantucket. Ya con doce años Maria ayudaba a su padre en sus observaciones astronómicas, viendo juntos el eclipse de 1831, y con catorce años, los balleneros acudían a ella para que calibrara los cronómetros de sus barcos.


Maria era una persona con las ideas muy claras y bastante carácter. Con diecisiete años abandonó la escuela en la que estudiaba para crear su propio centro educativo, donde enseñaba ciencias y matemáticas a las estudiantes. Con dieciocho empezó a trabajar como bibliotecaria en el Ateneo de su ciudad, donde estudió alemán, latín, matemáticas y, sobre todo astronomía, su gran pasión. Por las noches, junto con su padre, se dedicaba a estudiar los objetos celestes. 

El “Cometa de Miss Mitchell”

Con veintinueve años, Maria Mitchell descubrió un cometa, que posteriormente se llamaría "Cometa de Miss Mitchell". Maria no quería hacer público el descubrimiento, por miedo a ser menospreciada por ser mujer, pero entre su padre y el director del Observatorio de Harvard, la convencieron. Este hallazgo le supuso la concesión de una medalla que daba el rey de Dinamarca a todo aquel que descubriese un cometa.


Al año siguiente se convirtió en la primera mujer en formar parte de la Academia Americana de las Artes y las Ciencias y en 1850 fue igualmente la primera mujer que formaba parte de la Asociación Americana para el Avance de la Ciencia (AAAS).

La profesora e investigadora

En 1865 fue contratada como profesora de astronomía en el Vassar College, una universidad privada situada en un pueblecito de Nueva York. Era la única mujer entre los profesores del College y la peor pagada. Maria se convirtió en una mentora y referente de las alumnas. Además, prosiguió con sus investigaciones astronómicas y se especializó en el estudio de la superficie de Júpiter y Saturno. Determinó que las bandas de Júpiter eran nubes y no los rasgos de una superficie sólida, según se creía entonces. Construyó una cámara para hacer fotografías del sol y estudió las manchas solares. Como mujer tuvo que romper algunas barreras, como la norma que decía que las mujeres no podían trabajar fuera de casa durante la noche.

En 1869 Maria Mitchell viajó con cinco de sus estudiantes a Burlington (Iowa) para observar un eclipse total de sol. Los resultados de este estudio fueron publicados en el American Ephemerits and Nautical Almanac. En 1879 fueron invitadas a participar oficialmente como observadoras (las únicas mujeres) en el eclipse cerca del territorio indio en Denver (Colorado).

Feminista y sufragista

Gracias a su educación y las charlas y coloquios a los que asistió en el Ateneo de Nantucket, Maria tenía totalmente interiorizada la igualdad entre hombres y mujeres. Muy pronto se convirtió en un modelo para las sufragistas americanas, puesto que fue la primera mujer que recibió un salario por sus capacidades intelectuales en el campo académico. Fue socia fundadora de la Asociación Americana de Mujeres, de la que llegó a ser presidenta en 1875.

Su legado

Algunas de sus estudiantes tuvieron también carreras científicas brillantes, que comenzaron gracias a la inspiración de Maria Mitchell. Así, Christine Ladd Franklin fue la primera doctora de la Universidad John Hopkins. Ella y otras dos discípulas de Mitchell, Antonia Maury y Mary Whitney, fueron incluidas en la lista de James M. Cattell de "Hombres Americanos de Ciencia".

Tras su muerte en 1889, sus amigos y discípulos fundaron la Asociación Maria Mitchell para conservar su casa en Nantucket como un museo con sus libros e instrumentos. Actualmente la Asociación promueve la "investigación y divulgación de información en astronomía, historia natural y otras ramas de la ciencia" y ofrece una beca anual Women in Science para reconocer todo aquel que promueva el avance de las mujeres en ciencias naturales, física, ingeniería, informática y tecnología.

Algunas de sus reflexiones

“Las estrellas no son solo puntos brillantes, también transmiten la grandeza del universo”.

“El ojo que dirige la aguja en los delicados menesteres del bordado sirve igualmente para bisectar una estrella”.

“Ninguna mujer debería decir ‘Pero solo soy una mujer’. ¿Solo una mujer? ¿Y qué más se puede pedir?”.

"Hasta que la mujeres no se deshagan de la reverencia a la autoridad no se podrán desarrollar. Cuando hagan esto, cuando encuentren la verdad a través de sus propias investigaciones y las dudas las lleven al descubrimiento, entonces la verdad será suya y sus mentes volarán sin límites".

“Somos mujeres estudiando juntas”. Frase que decía a sus estudiantes en el Vassar College.

(El autor de este guión ha sido Alberto Morán, colaborador en DCiencia)

Aquí os dejo un video sobre María Mitchell, de la colección "La mujer en la ciencia" del Museo de Ciencia Universidad de Navarra, en colaboración con Women for Science & Technology:



Con la colaboración de la Fundación Española para la Ciencia y la Tecnología (FECYT) - Ministerio de Ciencia e Innovación.

martes, 2 de febrero de 2021

Las nuevas variantes de SARS-CoV-2

No podemos descartar que en las próxima semanas o meses vayan apareciendo nuevas variantes

En las últimas semanas se está hablando mucho de las nuevas variantes del SARS-CoV-2. ¿Qué sabemos hasta ahora?

Mejor hablamos de variantes genética, no de cepas. Variante implica diferencias en la secuencia del genoma, debido a mutaciones. Cepa es una variante en la que se demuestran cambios importantes en su biología (antigenicidad, transmisibilidad, virulencia, …).

Los virus mutan constantemente, viven mutando. Una población de virus es una nube de mutantes, con pequeñas diferencias genéticas. Se han detectado ya varios miles de mutantes de SARS-CoV-2, la mayoría sin ningún efecto.

Se ha calculado que la frecuencia de mutación del SARS-CoV-2 es de dos mutaciones al mes aproximadamente, esto supone que las variantes que ahora circulan pueden haber acumulado unas 22 mutaciones, respecto a la secuencia original del primer aislamiento de Wuhan.

De todas las mutaciones las que más preocupan son las que afectan al gen que codifica para la proteína S, porque es la que interacciona con el receptor celular ACE2 (la puerta de entrada a la célula). Además, al ser la proteína más expuesta es también la más antigénica, sobre la que actúan los anticuerpos. La mayoría de las vacunas utilizan esta proteína como su estrategia para activar el sistema inmune.

En las últimas semanas se han detectado nuevas variantes con distintas mutaciones en el gen S. Probablemente la presión a la que estamos sometiendo al virus (personas que ya tienen anticuerpos porque han pasado la infección, medidas para evitar la transmisión, las vacunas, …) esté forzando a que se seleccionen mutantes más transmisible. O quizá simplemente sea un fenómeno al azar.

Las tres variantes que más preocupan en este momento son:


Las mutaciones en la proteína S de las tres variantes B.1.1.7, B.1.351 y P.1.
En la parte superior se muestra un esquema de la organización del genoma de SARS-CoV-2. Debajo se detalla la proteína S, con sus dos dominios S1 y S2, la región especifica de unión al receptor (RBD, Receptor Binding Domain, en el dominio S1) y la zona de corte por furina. Las mutaciones 69/70 y Y144 son deleciones en la variante B.1.1.7. En rojo se señalan las mutaciones más importantes. Algunos le han puesto apodo a las mutaciones: Nelly a la mutación N501Y y Erik a la E484K. Los números hacen referencia al número del aminoácido en la proteína y las siglas al tipo de aminoácido. Así, por ejemplo, N501Y significa que en la posición 501 se ha sustituido el aminoácido Asparragina (N) por la Tirosina (Y). Otras letras: A, alanina; R, Arginina; D, ácido aspártico; C, cisteína; Q, glutamina; E, ácido glutámico; G, glicina; L, leucina; K, lisina; M, metionina; F, fenilalanina; P, prolina; H, histidina; T, treonina; I, isoleucina; S, serina; W, triptófano; V, valina. (Figura elaboración propia)

B.1.1.7, denominada variante “inglesa”, porque se detectó por primera vez en el Reino Unido en septiembre de 2020 (otras denominaciones VOC 202012/01, 201/501Y.V1). Desde entonces se ha detectado en 62 países (OJO, la extensión depende mucho de la capacidad de secuenciación de cada país: si no se busca no se encuentra). Tiene unas 17 mutaciones, de las cuales 9 están en el gen S. Las que más preocupan son la mutación N501Y que afecta a la región de unión al receptor (RBD), la deleción 69/90 porque causa un cambio en la conformación de la proteína y la P681H porque está cerca de la zona de corte S1/S2 por furina. Se ha sugerido que esta variante es más transmisible (se transmite de forma más eficiente y más rápido) y que hay una probabilidad real de que sea más letal. No parece que afecte de momento a la reactividad con anticuerpos ni a las vacunas actuales. NOTA (4/2/2021): ya se han detectado en Reino Unido algunos aislamientos de esta variante que han adquirido la mutación E484K (ver más adelante).

B.1.351, denominada variante “sudafricana”, porque se detectó por primera vez en Sudáfrica en octubre del 2020 (otras denominaciones 20C/501Y.V2). Se ha detectado en al menos 26 países. Tiene unas 21 mutaciones, de las cuales 9 están en el gen S. Comparte algunas mutaciones (como la N501Y) con la variante “inglesa”, pero preocupa porque además tiene otras mutaciones en la misma región RBD: E484K y K417N. La mutación E484K supone un cambio de aminoácido asociado a un cambio de carga (un aminoácido con carga negativa se sustituye por otro con carga positiva). Esto, junto con la mutación N501Y, puede afectar a la unión del virus a la célula. De momento, no hay datos sobre su transmisibilidad y no sabemos si es más virulenta, pero preocupan algunos datos preliminares que sugieren que podría escapar de la neutralización por anticuerpos tras una infección natural o la vacunación.

P.1., denominada variante “brasileña”, porque se detectó a principios de año en Japón en cuatro viajeros procedentes de Brasil (otras denominaciones 20J/501Y.V3, B.1.1.28.1). Tiene unas 17 mutaciones, de las cuales 10 están en el gen S. Se ha detectado en al menos 7 países. Presenta también las mutaciones N501Y y E484K y otra similar K417T. No hay datos, de momento, sobre su transmisibilidad, virulencia o reacción con anticuerpos. Recientemente se ha descrito en la región de Manaus (Brasil) una alta incidencia de reinfecciones. En esa región hasta un 76% de la población había sido infectada por el virus en la primera oleada, y ahora se han detectado algunas reinfecciones por esta variante. Sin embargo no se puede descartar que las reinfecciones no sean debidas a las propiedades de la variante, si no a otras circunstancias, como la falta de medidas para evitar el contagio.

La aparición de nuevas variantes no debe sorprendernos, es evolución en estado puro. Conforme le “metemos” más presión al virus, este sigue evolucionando y se van seleccionando aquellas variantes que escapan de ese presión. Es por tanto muy probable que en las próxima semanas o meses vayan apareciendo incluso nuevas variantes. De hecho ya se han descrito algunas nuevas: COH.20G/501Y y S Q677H, en EE.UU.; L452R en EE.UU. y en Europa. Por eso, denominarlas como variantes "inglesa", "sudafricana" o "brasileña" no tienen mucho sentido. La detección de las variantes depende de la capacidad de secuenciación de cada país. Irán apareciendo nuevas y es fundamental incrementar la vigilancia y la secuenciación de los aislamientos, para identificar qué variantes están circulando en cada país y poder hacer un seguimiento de los nuevos mutantes. Dudo de que las medidas como el cierre de fronteras con países concretos (o la cancelación de vuelos internacionales) tenga sentido y evite la extensión de estas variantes, que pueden surgir en cualquier sitio. Es necesario investigar qué efecto pueden tener estas variantes en la virulencia del virus y si se relaciona con una mayor gravedad de la enfermedad, o con un mayor número de reinfecciones.

Es pronto todavía para saber cómo estas variantes podrían influir en la efectividad de las vacunas. Hay que tener en cuenta que la mayoría de las vacunas inducen anticuerpos neutralizante contra varias zonas de la proteína S, además de activar la inmunidad celular (que en el caso de lo virus es esencial), así que es improbable que una mutación puntual pueda cambiar la efectividad de las vacunas. Sin embargo, la acumulación de mutaciones en zonas criticas de la proteína S, como la RBD u otras que pueden cambiar la conformación de la proteína, sí que pueden disminuir la eficacia de las vacunas. Es algo que habrá que seguir evaluando muy de cerca.

Por último, todo esto refuerza la idea de la importancia de las medidas de contención del virus. En este sentido, retrasar las vacunaciones (por falta de suministro o por una gestión deficiente) no es una buena noticia: cuanto antes vacunemos a la población mucho mejor, tener grupos sin vacunar o mal vacunados podría favorecer la aparición de nuevas variantes. Además de la "presión selectiva" también hay tener en cuenta el número. A una misma tasa de mutación, cuantos más viriones haya, más mutantes habrá. Por lo tanto, cuántos más infectados haya, muchos más millones de partículas virales habrá, y muchos más mutantes se generarán. Si el mutante aparece en un individuo que no infecta, desaparece. Pero si aparece en uno que infecta, se expande. Más infectados, más mutantes. Esta es otra razón para que vacunemos y disminuya el número de infectados: a mayor número de infectados más probabilidades hay de que aparezcan variantes mutantes severas. Mantengamos las normas y evitemos infectar a otros. 

Te recomiendo un par de páginas espectaculares con toda la información detallada sobre el genoma, las mutaciones y la variantes genéticas de SARS-CoV-2:

SARS-CoV-2 Proteome-3D Analysis (University of Cambridge)

- CoVariants (Institute of Social and Preventive Medicine, University of Bern)

NOTA: me comentan varios veterinarios que éste es el problema de las vacunas contra coronavirus en animales. Aunque digamos que los coronavirus mutan "menos" que los virus de la gripe o el VIH, eso no quiere decir que no muten. Por eso, la revacunación en el mundo animal es frecuente. 

También te puede interesar: 

La nueva variante “inglesa” de SARS-CoV-2

La complejidad de las nuevas variantes del coronavirus

martes, 26 de enero de 2021

La mujer que descubrió el ciclo del glucógeno

Probablemente más de una vez has experimentado después de una actividad muscular intensa cierto dolor y calambres. Y quizá sepas que tiene que ver con la acumulación de lactato dentro del músculo. En realidad ese fenómeno está relacionado con el ciclo de Cori, una ruta metabólica que consiste en la circulación cíclica de la glucosa y el lactato entre el músculo y el hígado.

Las células musculares, usan la glucosa para obtener energía en forma de ATP (glucolisis) empleando un ayudante, el NAD. La glucosa proviene de las reservas de glucógeno a través de la circulación sanguínea procedente del hígado. En presencia de oxígeno, la oxidación de la glucosa se completa en la mitocondria generando una gran cantidad de ATP adicional y renovando el NAD. Cuando las células no reciben suficiente oxígeno, por ejemplo durante una actividad física intensa, la glucosa se transforma en lactato (fermentación láctica anaerobia) para renovar, de una forma alternativa ese NAD y evitar que la glicolisis se detenga por escasez de éste. Se producen así grandes cantidades de lactato, que difunde a la sangre para ser llevado al hígado. El lactato en el hígado es convertido nuevamente en glucosa, retornando a la circulación para ser llevada de vuelta al músculo. En condiciones de reposo, sin actividad muscular, la glucosa se almacena en forma de glucógeno en el hígado.

Este ciclo tiene gran importancia fisiológica, ya que juega un papel fundamental en el mantenimiento de la glucemia, tiene implicaciones vitales en el equilibrio ácido-base (el lactato es un ácido) y representa una manera de redistribución de glucógeno muscular que no puede liberar glucosa a la sangre como tal, únicamente en forma de lactato. Conocer este ciclo no solo sirve para entender por qué surgen las agujetas, sino que existen varias enfermedades metabólicas y energéticas relacionadas con deficiencias en los enzimas que intervienen en el ciclo de Cori.

El ciclo de Cori debe su nombre a Gerty Cori, una gran científica que, junto a su marido Carl Cori, revolucionó la investigación en biomedicina al asentar las bases bioquímicas y moleculares en la fisiología y la patología. Ambos recibieron el premio Nobel de Medicina y Fisiología en 1947, junto a Bernardo A. Houssay.



Su nombre completo era Gertrude Theresa Radnitz, nació en 1896 en Praga en lo que entonces era Austria-Hungría. Recibió su doctorado en la Escuela de Medicina de la Universidad Alemana de Praga en 1920 y un año después se mudó a Viena donde se casó con su compañero de clase Carl Cori. Empezaron así una estrecha colaboración que les convirtió en inseparables, tanto a nivel científico como personal. El ambiente antisemítico (Gerty era judía, aunque posteriormente se convertiría al catolicismo) y la falta de oportunidades después de la Primera Guerra Mundial que asoló Europa, les llevó a emigrar a los Estados Unidos en 1922. Tras unos años en Buffalo (Nueva York), en 1931 se mudaron a la Universidad de Washington en San Luis. Aunque al principio Gerty solo tuvo un puesto de asistente de investigación con un salario cinco veces menor que el de su marido, en 1947, justo antes de recibir el Nobel, Gerty obtuvo su plaza de catedrática en dicha Universidad.

Los Cori definieron la importancia del glucógeno, caracterizaron por primera vez su metabolismo y el de la glucosa in vivo, su famoso ciclo de Cori. Pero describieron también compuestos intermediarios como la glucosa-1-fosfato y las enzimas glucógeno fosforilasa y fosfoglucomutasa. Además, proporcionaron las bases para describir la regulación de la actividad de las enzimas mediante fosforilación y desfosforilación y caracterizaron varias de las enfermedades causadas por deficiencias en enzimas del metabolismo del glucógeno. Todos estos descubrimientos científicos, hicieron del laboratorio de los Cori el centro de la bioquímica experimental en los años 40-50. Por su laboratorio pasaron renombrados investigadores, algunos que llegaron a ser también premios Nobel como Arthur Kornberg y Severo Ochoa en 1959, Luis Leloir en 1970, Earl Sutherland en 1971, Christian de Duve en 1974 y Edwin G. Krebs en 1991.

Gerty Cori fue la primera mujer en ganar el Premio Nobel en Fisiología y Medicina y la tercera en conseguir el Nobel, después de Marie Curie y su hija Irene. Sus trabajos, muchos de ellos realizados conjuntamente con su marido, contribuyeron a alumbrar un nuevo concepto en la investigación biomédica: las enfermedades genéticas del metabolismo.

Aquí os dejo un video sobre Gerty Cory, de la colección "La mujer en la ciencia" del Museo de Ciencia Universidad de Navarra, en colaboración con Women for Science & Technology:



Con la colaboración de la Fundación Española para la Ciencia y la Tecnología (FECYT) - Ministerio de Ciencia e Innovación.

sábado, 23 de enero de 2021

SARS-CoV-2: Dr Jekyll y Mr Hyde

El extraño caso de la curación de un linfoma de Hodgkin 

por el SARS-CoV-2

Se acaba de publicar (2/01/2021) en el British Journal of Haemathology el siguiente caso clínico. Varón de 61 años con inflamación de los ganglios y pérdida de peso, recibía hemodiálisis por insuficiencia renal terminal después de un trasplante renal fallido. Se le diagnostica un linfoma de Hodgkin clásico en estadio III (el linfoma afecta a áreas ganglionares localizadas a ambos lados del diafragma o por encima del diafragma y en el bazo). Poco después del diagnóstico, ingresó con dificultad para respirar y se le diagnosticó neumonía por SARS-CoV-2  positivo por PCR. Después de once días, fue dado de alta para convalecer en su casa. No se administró corticosteroides ni inmunoquimioterapia. Cuatro meses después, la inflamación de los ganglios se había reducido y una exploración PET reveló una remisión generalizada del linfoma. 

Comparación de la tomografía por emisión de positrones (PET) al inicio (izquierda) y después de meses infectado con SARS-CoV-2 (derecha). Fuente (Ref.)

Según los autores, la hipótesis es que la infección por SARS-CoV-2  desencadenó una respuesta inmunitaria antitumoral: las citocinas inflamatorias producidas en respuesta a la infección podrían haber activando células T específicas con antígenos tumorales y células asesinas naturales contra el tumor.  El SARS-CoV-2 le había curado el linfoma.

¿Magia potagia? Por lo visto antes ya se había descrito algún caso similar en otro tipo de linfomas que habían remitido espontáneamente antes de tratamiento debido al efecto antitumoral de una neumonía infecciosa y de una colitis por Clostridium difficile.

En el fondo esto no es tan sorprendente. Los microorganismos no solo pueden causar cáncer, sino que también pueden ayudar a curarlo. A finales del siglo XIX un médico de Nueva York llamado William B. Coley desarrolló un tratamiento contra el cáncer con un preparado de bacterias llamado las toxinas de Coley. Este médico se dio cuenta de que los pacientes con cáncer que además sufrían una infección respondían mejor que los pacientes sin infección. Coley pensaba que la infección estimulaba el sistema inmune para luchar contra el cáncer y por eso desarrolló un cóctel de bacterias Streptococcus pyogenes y Serratia marcescens, que inyectaba directamente en el tumor. Durante años en EE. UU. se trataron pacientes con algunos tipos de cáncer incurables con preparados de bacterias y toxinas, en muchos casos de forma exitosa. 

William B. Coley (en el centro) en 1892.

Sin embargo, las críticas y sobre todo el éxito de los nuevos tratamientos de quimio y radioterapia hizo que las toxinas de Coley cayeran en el olvido. No obstante, actualmente se ha comprobado que el principio básico del tratamiento de Coley era correcto y que algunos tipos de cáncer son sensibles a una estimulación del sistema inmune.

En el fondo todo está relacionado: los microbios, el sistema inmune, la respuesta inflamatoria y el cáncer, pero todavía no sabemos muy bien cómo. En las últimas décadas se ha empleado el bacilo Calmette-Guerin, más conocido por sus siglas BCG, como tratamiento contra el cáncer de vejiga. El BCG es en realidad un extracto atenuado de la bacteria Mycobacterium bovis que se emplea como vacuna contra la tuberculosis. El BCG estimula una respuesta inmune y causa la inflamación de la pared de la vejiga que acaba destruyendo las células de cáncer dentro de la vejiga, al menos en los primeros estadios del tumor. En realidad en esto se basa la inmunoterapia, que está tan de moda actualmente. La intuición de Coley era correcta: estimular el sistema inmune puede ser efectivo para tratar el cáncer. Por eso, a William B. Coley se le llama «el padre de la inmunoterapia».

domingo, 10 de enero de 2021

El coronavirus “chino”: un año después, las vacunas.

El 10 de enero de 2020, hace exactamente un año, publiqué el que quizá haya sido el primer artículo en castellano sobre lo que entonces se denominada el coronavirus “chino” y ahora llamamos SARS-CoV-2. El 31 de diciembre de 2019 las autoridades chinas anuncian la existencia de unos pocos casos de una neumonía atípica de origen desconocido. El 10 de enero de 2020 se hizo público el genoma del virus causante de esa rara neumonía, un nuevo coronavirus. El 12 de enero las autoridades chinas notifican el primer fallecimiento. El número total de casos confirmados era de 41, en ese momento no había evidencia de transmisión entre humanos. Al día siguiente ya estaba en la web de la OMS el primer protocolo de RT-PCR para la detección del virus. El día 30 de ese mismo mes la OMS declara la emergencia sanitaria internacional. El resto de la historia ya la conocen.

COVID-19, la enfermedad que causa el virus SARS-CoV-2, ha sido la primera pandemia del siglo XXI. A día de hoy, son más de 89 millones de personas infectadas, la extensión es prácticamente planetaria y ha causado cerca de 2 millones de muertos. Ha sido un año muy duro, lo más parecido a una guerra que muchos hemos vivido. Pero ha sido el año de la ciencia. Si en 1980 se describieron los primeros casos de SIDA y se tardaron más de dos años solo en identificar el agente causante (el virus VIH), ahora en menos de doce meses hay 85 prototipos de vacunas en fases preclínicas y 64 en ensayos clínicos, 20 ya en fase III y al menos tres aprobadas para su uso. Solo la ciencia, el conocimiento y la cooperación nos sacará de esta pandemia. Repasemos en qué consisten algunas de las vacunas contra SARS-CoV-2.


Ciclo de multiplicación del SARS-Cov-2 
(Autores: V. Asensio & I. López-Goñi, disponible en wikimedia).


Vacunas ARNm

En este momento las más avanzadas son la BNT162b2 (nombre genérico Tozinameran, nombre comercial Comirnaty) desarrollada por Pfizer/BioNTech, y la mRNA-1273 desarrollada por Moderna. En los ensayos clínicos en fase III ambas han demostrado una eficacia excelente y similar (95%, 94,1%, respectivamente). Una diferencia importante es que la de Pfizer/BioNTech requiere una temperatura de almacenamiento de -80ºC mientras que la de Moderna es de -20ºC.

Se basan en el gen que codifica para la proteína S (la glicoproteína de la envoltura del virus que actúa como la llave que se une al receptor de la célula). Son una secuencia de ARN que se ha modificado para aumentar su estabilidad y facilitar que la célula sea capaz de “leerla” y traducirla como un ARNm y sintetizar la proteína viral. Para facilitar que esta molécula sea transportada al interior de las células, va encapsulada en una nanopartícula lipídica que se fusionará con la membrana de la célula. Algunos de los lípidos que forman estas nanopartículas son derivados del polietilenglicol, fosfolípidos, colesterol y otros. Se administra por vía intramuscular en dos dosis separadas 21-28 días. 

Las nanopartículas lipídicas se fusionan con la membrana de las células musculares, y liberan las cadenas de ARNm en el citoplasma. Éstas son reconocidas por los ribosomas y por toda la maquinaria enzimática de la célula y sintetizan la proteína S del virus. Es como si a la célula le hubiéramos dado el libro de instrucciones (ARNm) para que ella misma sintetizará la proteína del virus. La vida media del ARNm de la vacuna es muy corta y la molécula se destruirá rápidamente. La proteína S así sintetizada migrará a la superficie de la célula de forma que las células vacunadas expondrán fragmentos de la proteína en su superficie, que serán reconocidos por el sistema inmune. Además, cuando esas células vacunadas se destruyan, los restos celulares que contendrán fragmentos de la proteína S activarán un tipo de células del sistema inmune denominadas células presentadoras de antígenos. Estás células serán las encargas de activar al resto de células inmunes, los linfocitos T que regulan la respuesta contra las células infectadas con el virus, y los linfocitos B que producirán los anticuerpos contra la proteína S. 

Vacunas basadas en adenovirus

Las vacunas AZD1222 (también conocida como ChAdOx1) desarrollada por Oxford-AstraZeneca, la JNJ-78436735 (Ad26.COV2.S) desarrollada por Johnson & Johnson, y la rusa Sputnik V (Gam-Covid-Vac) se basan en vectores de adenovirus. 

En este caso, el gen de la proteína S se integra en el genoma de otro virus, un adenovirus, que actúa como vector o vehículo para inyectar el gen en el núcleo de la célula vacunada. Los adenovirus son un tipo de virus que causan catarros comunes. Estas vacunas utilizan una versión modificada de los adenovirus que los hacen inofensivos, pueden entrar dentro de las células pero no son capaces de replicarse. La vacuna de Oxford-AstraZeneca emplea un adenovirus de chimpancé (lo de “ChAd” viene de Chimpanzee Adenovirus), la vacuna de Johnson & Johnson emplea un adenovirus humano denominado Adenovirus 26 (Ad26), y la rusa Sputnik V es la combinación de dos adenovirus humanos diferentes, el Ad26 y el adenovirus 5 (Ad5). Se ha sugerido que nuestro sistema inmune, que ya ha tenido contacto previo con otros adenovirus humanos, podría responder frente a este tipo de vacunas fabricando anticuerpos contra el adenovirus vector, lo que podría reducir la eficacia de las vacunas. Para evitar esto, la vacuna de Oxford-AstaZeneca ha optado por utilizar como vectores adenovirus de chimpancé en vez de humanos, mientras que la rusa Sputnik V emplea el Ad26 en la primera dosis vacunal y el Ad5 en la segunda. 

Este tipo de vacunas han sido ensayadas anteriormente contra otros virus como el ébola, HIV y zika. Además son más resistentes que las vacunas ARNm, el ADN no es tan frágil como el ARN y va rodeado de la cubierta proteica del adenovirus vector que lo protege. Por eso, no requieren temperaturas de congelación para su almacenaje y resisten hasta seis meses a temperaturas de refrigeración (2-8ºC).

Una vez inyectadas en el músculo, el adenovirus se adhiere a la superficie de la célula y entra en su interior en forma de una vesícula. Dentro de la célula, el adenovirus escapa de esa vesícula, viaja hasta la superficie de la membrana nuclear e inyecta su ADN en el núcleo de la célula. El adenovirus está modificado de forma que no puede multiplicarse, pero el gen de la proteína S del SARS-CoV-2 es reconocido por la maquinaria enzimática de la célula y se transcribe a ARNm. Este ARNm que lleva la información de la proteína S abandona el núcleo, es reconocido por los ribosomas y se sintetiza la proteína S. A partir de aquí, el mecanismo de activación del sistema inmune es similar al explicado para las vacunas ARNm. Sin embargo, una diferencia es que el propio adenovirus provoca una activación inespecífica del sistema inmune por lo que este tipo de vacunas suelen generan una respuesta inmune más potente frente a las proteínas S. 
 
La vacuna de Oxford-AstraZeneca requiere dos dosis, separadas cuatro semanas. Los ensayos clínicos han demostrado una eficacia entre 62-90%, dependiendo de la dosis. En concreto, la combinación de dos dosis completas obtuvo una eficacia del 62%, pero, curiosamente, cuando en la primera dosis se administró la mitad, se obtuvo una eficacia mayor del 90%. Parece ser que una primera dosis menor se asemeja más a una infección real y promueve una respuesta inmune más potente cuando se administra la segunda dosis. 

Los ensayos clínicos con la rusa Sputnik V han demostrado una eficacia del 91%. En este caso también se requiere dos dosis, la primera con el Ad26 y la segunda con el Ad5, como ya hemos comentado. En el caso de la vacuna de Johnson & Johnson, que emplea solo una dosis, se esperan los resultados de los ensayos clínicos en el mes de enero de 2021.

Vacunas de proteínas

La vacuna NVX-CoV2373 (de la empresa Novavax), está en fase III y todavía no ha sido autorizada en ningún país. Se trata de una vacuna de proteína S purificada. Para ello, han insertado el gen S en otro virus, un baculovirus. Son virus de insectos que infectan células de polillas y se emplean como vectores de expresión para producir grandes cantidades de proteínas. Las células infectadas por el baculovirus recombinante producen la proteína S, se purifica y se ensamblan en nanopartículas que imitan la estructura molecular de la superficie del coronavirus, que obviamente no se pueden replicar ni causar la COVID-19. La vacuna incluye un compuesto que actúa como adyuvante, para que la respuesta inmune sea más potente, y se administra intramuscularmente. Una ventaja importante es que es estable por al menos tres meses en el refrigerador. 

Vacunas con virus inactivos

Las vacunas con virus inactivos, muertos, se han empleado desde hace décadas y son la base de vacunas tan exitosas como la de la polio (la vacuna de Salk), la rabia o la hepatitis A, entre otras. Emplean coronavirus inactivos las vacunas chinas BBIBP-CorV (de la compañía Sinopharm), CoronaVac (de la empresa Sinovac) y la india Covaxin (de la compañía Bharat Biotech).

Para la vacuna BBIBP-CorV, los investigadores obtuvieron tres variantes del coronavirus de pacientes de hospitales chinos. Seleccionaron la que era capaz de multiplicarse rápidamente en células de riñón de mono y de crecer a gran escala en bioreactores. Una vez que obtuvieron una gran cantidad de virus, los inactivaron con beta-propiolactona. Así, inactivados, los coronavirus no pueden replicarse, pero sus proteínas, incluida la proteína S, se mantienen intactas. En la vacuna se mezclan también con algunas sustancias adyuvantes para mejorar la respuesta inmune. De forma similar, para crear la vacuna CoronVac, se obtuvieron coronavirus de muestras de pacientes de China, Inglaterra, Italia, España y Suiza. Una de las muestras de China fue la que finalmente se empleó como base para esta vacuna. De momento solo hay datos de la eficacia en fase III de esta última, un 78%.


Fase de desarrollo de las vacunas.

Como hemos comentado, en menos de un año tenemos más de 150 propuesta de vacunas contra la COVID-19, empleando todo tipo de estrategias, desde las más novedosas (ARNm) hasta las más clásicas (virus completos inactivos). En condiciones de emergencia, como es esta pandemia se agilizan los procedimientos para autorizar el uso de nuevas vacunas. Varias son las causas por las que en menos de un año vamos a tener varios candidatos en el mercado, cuando el proceso normal suele durar más de diez años de media: i) no se parte de cero, ya había varios grupos de investigación trabajando en proyectos de vacunas para virus similares (ébola, zika, SARS, MERS, …); ii) algunos de estos proyectos con otros coronavirus ya habían llegado hace años a fase clínica I, y se ha tenido en cuenta esa experiencia previa; iii) se ha invertido una cantidad de dinero como jamás se había hecho en la historia de la ciencia, lo que ha permitido realizar los experimentos con mucha mayor rapidez; iv) está habiendo una colaboración internacional también única en la historia, entre universidades, centros de investigación, empresas farmacéuticas, gobiernos y ONGs; v) las agencias reguladoras lo han priorizado mediante un sistema de evaluación continua, reduciendo la burocracia y los tiempos de espera, pero sin saltarse ninguna etapa; vi) se han podido solapar fases clínicas I y II, de manera que antes de finalizar una se ha comenzado la siguiente; vii) la fase clínica III ha reclutado varios miles de voluntarios de varios países y grupos diferentes, por lo que sus resultados son estadísticamente más significativos que en otros ensayos; viii) la fabricación de las vacunas se está haciendo asumiendo un riesgo: se están fabricando hace meses sin saber si finalmente se van a aprobar, por eso pueden salir al mercado nada más recibida la autorización. Además, una vez que sabemos que las vacunas son seguras y eficaces en las fase clínicas anteriores, no hay que olvidar que después continúa una fase IV de vigilancia, para seguir evaluando su seguridad (posibles efectos secundarios muy poco frecuentes que es imposible detectar con miles de voluntarios pero que se ponen de manifiesto cuando se prueba en millones de personas), y su efectividad (si realmente funciona en el control de la pandemia). 

Así como el 2020 ha sido el año del coronavirus, podemos confiar en que el año 2021 sea el año de las vacunas, el año en el que comencemos a controlar por fin esta pandemia. Hay motivo para la esperanza.


jueves, 7 de enero de 2021

La complejidad de las nuevas variantes del coronavirus

¿Variantes o cepas? 

Variante implica diferencias en la secuencia del genoma, debido a mutaciones. Cepa es una variante en la que se demuestran cambios en su biología (antigenicidad, transmisibilidad, virulencia, …). De momento, hablemos de variantes. 

La evaluación de las nuevas variantes debería responder a estas preguntas: la nueva variante, ¿ha aparecido por un fenómeno de selección natural o por casualidad de forma fortuita? Si ha ocurrido por selección natural, ¿qué mutaciones han sido las seleccionadas? ¿Cuál es la ventaja adaptativa de esas mutaciones? ¿Qué efecto tienen esas mutaciones en la transmisibilidad, difusión, cambio antigénico o virulencia del virus?



La mutación D614G

Cambio del aminoácido aspártico (D) por una glicina (G) en la posición 614 de la proteína S. Detectada a principios de marzo de 2020, se ha extendido de forma global por todo el plante, siendo dominante desde el siguiente mes. Inicialmente apareció de forma independiente y simultánea en varias regiones, lo que sugería una selección natural y un posible efecto adaptativo beneficioso. Sin embargo, la mutación se encontró en varias regiones de China en algunos aislamientos de finales de enero. Esto sugiere que la dispersión global de esta mutación ha sido resultado de un fenómeno casual (no adaptativo), en el que los virus con la mutación iniciaron la mayoría de los primeros eventos de transmisión en múltiples lugares (efecto fundador). Sin embargo, un análisis reciente de más de 25.000 secuencias del virus en Reino Unido ha encontrado que los virus con la mutación 614G se difunden más rápido que los 614D. En modelos animales también se ha encontrado que los virus 614G se transmiten de forma más eficiente.

La mutación N453Y

A finales de primavera de 2020 se detectó un brote de SARS-CoV-2 en granjas de visones en Holanda y Dinamarca. Las primeras investigaciones demostraron transmisión del virus de humanos a visones, entre visones y del visón a humanos. En noviembre de 2020 las autoridades danesas informaron de 214 casos humanos de COVID-19 asociados a estas granjas de visones. Muchas de las secuencias de estos brotes tenían una mutación en el gen que codifica la proteína S, que resultaba en una sustitución de una asparragina (N) por una tirosina (Y) en la posición 453, la zona de unión al receptor celular ACE2. Además, once individuos del brote danés tenían tres mutaciones adiciones (del69_70, I692V y  M1229I). La adaptación del SARS-CoV-2 al visón es muy preocupante porque puede favorecen la evolución del virus en un reservorio animal del que, como hemos visto, puede acabar infectando al ser humano o a otros mamíferos. Por esta razón, muchos países han incrementado su vigilancia y han adaptado políticas de sacrificio masivo en granjas de visones. 

El linaje B.1.1.7 y la mutación N501Y

El linaje B.1.1.7 (también denominado 501Y.V1) es un grupo filogenético que se está transmitiendo muy rápidamente en el sureste de Inglaterra. Ha acumulado 17 mutaciones antes de su detección a principios de septiembre, lo que sugiere una evolución rápida, probablemente en un paciente crónico. El 28 de diciembre, esta variante era responsable de aproximadamente el 28% de los casos de infección en Inglaterra y los modelos de genética de poblaciones sugieren que se propaga un 56% más rápidamente que otros linajes. Este linaje se está expandiendo cuando los casos de SARS-CoV-2 están muy generalizados y parece que logra ser dominante por competencia en una situación en la que hay varias variantes distintas circulando. Esto sugiere un fenómeno de selección natural del virus que es más transmisible a nivel poblacional. Controlar este tipo de variantes más transmisibles, además de mascarillas, distancia social y limitación de reuniones, probablemente requerirá medidas más restrictivas.

Ocho de las mutaciones del linaje B.1.1.7 están en el gen de la glicoproteína S. Las más importantes son la sustitución de una asparragina (N) por una tirosina (Y) en la posición 501 en la zona de unión al receptor, y la deleción del aminoácido en posición 69_70 y sustitución de una prolina (P) por una histidina (H) en posición 681 en el sitio de corte por furina. Todas estas mutaciones muy probablemente afecten a la capacidad de unión del virus al receptor ACE2 y a su replicación intracelular. Las variantes 501Y es probable que tengan más afinidad por el receptor humano ACE2. Una variante diferente, también con la mutación N501Y, se está extendiendo rápidamente en Sudáfrica. Aunque todavía no hay datos para afirmar que estas nuevas variantes sean más virulentas, el que puedan ser más infecciosas y se extienda con mayor rapidez también puede acabar causando mayor número de casos, un colapso sanitario y a la larga mayor mortalidad. 

¿Qué efecto pueden tener estas mutaciones en la antigenicidad y efectividad de las vacunas?

La vigilancia genómica de las variantes del SARS-CoV-2 se ha centrado en gran medida en las mutaciones en la glicoproteína S, responsable de la unión a las células y diana principal de los anticuerpos neutralizantes. La proteína S es además el antígeno principal en la mayoría de las vacunas actuales. Si una variante tiene una o más mutaciones que aumentan su transmisibilidad, podría competir rápidamente y reemplazar a otras variantes circulantes. Por eso, existe un gran interés en saber si esas mutaciones pueden causar cambios en la glicoproteína que comprometan la eficacia de las vacunas. Sin embargo, debido a que las vacunas actuales provocan una respuesta inmune contra toda la proteína S, es esperable que se produzca una protección eficaz a pesar de algunos cambios en los sitios antigénicos en las variantes del SARS-CoV-2. Aunque evidentemente es un tema que habrá que vigilar muy de cerca. 

También hay que tener en cuenta que las glicoproteínas virales están sujetas a compensaciones evolutivas. A veces, una mutación que mejora una propiedad viral, como la unión a un receptor, puede reducir otra propiedad, como escapar del anticuerpo del huésped. De hecho, la evidencia sugiere que este podría ser el caso de la mutación D614G. Es posible que las mutaciones que son "buenas" para el virus en este momento también lo hagan menos adecuado en el contexto de la inmunidad a nivel de población en el futuro. Entender estas dinámicas y su posible influencia en la eficacia de las vacunas requiere un seguimiento a gran escala de la evolución del SARS-CoV-2 y de la inmunidad del huésped durante un largo periodo de tiempo. Es pronto para saber qué efecto tendrán estas mutaciones, no debería ser motivo de alarma, pero sí de una vigilancia muy estrecha.

Referencia:

Genetic Variants of SARS-CoV-2—What Do They Mean?. A. S. Lauring, and E. B. Hodcroft. JAMA. Published online January 6, 2021. doi:10.1001/jama.2020.27124

También te puede interesar: 

- La nueva variante “inglesa” de SARS-CoV-2

NOTA: Este artículo (todavía sin revisar por pares) muestra que las nuevas variantes con la mutación 510Y y B.1.1.7 se neutralizan con la vacuna de Pfeizer/BionNTech. 

viernes, 1 de enero de 2021

Vacunas RNAm: un mensaje de esperanza

La tecnología RNAm, una nueva revolución en biomedicina

Comenzamos el año con la primera vacuna contra la COVID-19 aprobaba, desarrollada por Pfizer/BioNtech con la tecnología RNA mensajero (RNAm; el nombre técnico de la vacuna es BNT162b2 y el comercial Comirnaty).

La tecnología de vacunas basadas en RNA mensajero monocatenario no es nueva. Se viene empleando en ensayos preclínicos y clínicos desde hace décadas. Se ha demostrado que producen una potente respuesta protectora en modelos animales contra infecciones por ébola, zika, gripe e incluso bacterias como Streptococcus. En estos últimos años ha habido incluso ensayos clínicos en humanos de fase I y IIb contra HIV, gripe, rabia, zika, … Han sido incluso más numerosos los ensayos clínicos de vacunas RNA contra el cáncer: de próstata, mama, melanoma, gliobastoma, ovarios, páncreas y otros. En general, estos resultados sugieren que las vacunas RNAm son seguras y razonablemente bien toleradas


De hecho, la mayor preocupación con este tipo de vacunas, más que la seguridad, ha sido su inestabilidad, su baja eficiencia para introducirlas en las células y que expresaran el antígeno, y que el RNA puede estimular reacciones inmunogénicas de tipo inflamatorio, lo que ha limitado en parte su desarrollo. El RNA es una molécula muy inestable y por eso requiere condiciones de mantenimiento extremas (de menos 80ºC), se degrada muy fácilmente por RNAsas y no se internaliza de forma eficiente.

Sin embargo, esta tecnología también tiene ventajas. Es relativamente más barato que otro tipo de vacunas y, sobre todo permite diseñar una vacuna nueva en un tiempo récord. Una vez que se conoce el genoma del patógeno, en unas semanas se pueden producir los primeros prototipos vacunales. Por eso, es una excelente herramienta cuando aparece un patógeno nuevo para el que se necesita un vacuna con urgencia, como una pandemia. En este caso, la rapidez es un beneficio mayor que el problema de su inestabilidad. Moderna, por ejemplo, fue capaz de diseñar su vacuna de RNAm contra SARS-CoV-2 en tan solo seis semanas después de que el genoma del virus se hizo público. 

Además, el proceso de fabricación no requiere emplear sustancias químicas tóxicas, ni cultivos celulares que se pueden contaminar con otros virus o microorganismos, su fabricación es rápida y fácil, requiere poca manipulación con lo que se minimiza el riesgo de posibles contaminantes. El RNAm (como veremos luego) no se integra en el DNA. Por eso, las vacunas RNAm se consideran potencialmente muy seguras. Otra ventaja es que el mismo RNA tiene cierto efecto inmunomodulador, por lo que actúan como adyuvante estimulando de forma inespecífica el sistema inmune. Pero, ¿son realmente eficaces este tipo de vacunas?

Cómo funciona el RNAm dentro de una célula

Veamos antes cómo funciona el RNA dentro de una célula, en condiciones normales. La información genética se encuentra codificada en el DNA en el núcleo de la célula, en forma de una secuencia de nucleótidos. En el núcleo, el DNA transfiere esa información a la molécula de RNA, en un proceso que se denomina transcripción: la secuencia de DNA se copia en forma de RNA. Este RNA sale del núcleo al citoplasma de la célula donde se encuentra con los ribosomas que son los encargados de traducir esa información codificada en el RNA en una secuencia de aminoácidos, en una proteína. Así es como la información genética del DNA acaba en una proteína concreta, a través del RNA, que actúa como una molécula intermedia, como mensajero, entre ambos. El RNAm no entra en el núcleo celular, tiene una vida media muy corta y rápidamente es degradado. Por eso, para que la síntesis de proteínas continúe, se debe producir RNAm de forma continua.

¿Cómo es la vacuna RNAm?
 
La vacuna RNAm de Pfizer/BioNtech se basa en el genoma del coronavirus, en concreto en el gen que codifica para la proteína S (la glicoproteína de la envoltura del virus que actúa como la llave que se une al receptor de la célula). Pero esa molécula no es un trozo del RNA del virus sin más. Esa secuencia se ha modificado para aumentar su estabilidad y facilitar que la célula se capaz de “leerla”, traducirla y sintetizar la proteína viral. Obviamente, como solo se utiliza un fragmento de RNA, este tipo de vacunas no pueden causar la enfermedad.

Entre las modificaciones más importantes están: 

i) la sustitución del nucleósido uridina (*) por el derivado natural metil-pseudouridina. Esta modificación es quizá la más importante, no cambia la información genética (es la misma secuencia), sino la estructura química y hace que la molécula sea mucho menos inmunoreactiva e inflamatoria (menos tóxica);

ii) se han optimizado los codones (**) para que sean traducidos más fácilmente por las células humanas; 

iii) se han protegido los extremos del fragmento del RNA, añadiendo una estructura CAP en el extremo 5´y una cola de poli adeninas en el extremo 3´, características de todos los RNAm;


iv) se han añadido secuencias reguladoras no traducidas (UTR) en ambos extremos;

v) se añade un nuevo codón de terminación y otras secuencias que estabilizan la molécula y facilitan la traducción por la maquinaria de síntesis de proteínas de las células humanas;

vi) y además se ha incluido un par de mutaciones en la secuencia del gen que codifica para la proteína S, que resultan en el cambio de una lisina por una prolina en la posición 986 de la proteína y de una valina por una prolina en la posición 987. De esta forma se produce un cambio en la conformación de la proteína que proporciona una antigenicidad mejor. 

Para facilitar que esta molécula sea transportada al interior de las células, va encapsulada en una nanopartícula lipídica que se fusionará con la membrana de la célula. Algunos de los lípidos que forman estas nanopartículas son derivados del polietilenglicol, fosfolípidos, colesterol y otros. Algunos de estos componente lipídicos son los que pueden causar una reacción alérgica grave (anafilaxia) en algunas personas, por lo que no está indicada la vacuna en ellas. 



¿Cómo funciona la vacuna RNAm?

La vacuna se administra por vía intramuscular. Las nanopartículas lipídicas se fusionan con la membrana de las células musculares, y liberan las cadenas de RNAm en el citoplasma. Éstas son reconocidas por los ribosomas y por toda la maquinaria enzimática de la célula y sintetizan la proteína S del virus. Es como si a la célula le hubiéramos dado el libro de instrucciones (RNAm) para que ella misma sintetizará la proteína del virus. Esta proteína se expondrá en la superficie de la célula y estimulará la respuesta inmune. Se producirá así una potente respuesta de anticuerpos neutralizantes que reaccionan contra varias partes de la proteína S (por eso, la aparición de variantes genéticas con mutaciones puntuales en el gen de la proteína S es probable que no afecten a la eficacia de las vacunas), y una respuesta celular.


Ha sido la primera vez que una vacuna RNAm ha llegado a fase clínica III. Como he comentado al principio, había dudas de que esta tecnología fuera realmente eficaz. El ensayo clínico incluyó alrededor de 44.000 voluntarios mayores de 16 años. De ellos, la mitad recibió la vacuna y la otra mitad placebo y en ambos casos desconocían de cuál de las dos opciones se trataba. De todos ellos, 36.523 voluntarios no presentaban signos previos de infección. Al cabo de unos meses 170 presentaron síntomas de infección de COVID-19, 8 de las 18.198 personas que recibieron la vacuna y 162 de las 18.325 que recibieron la inyección de placebo. Esto significa que la vacuna mostró una eficacia del 95% en el ensayo clínico. Una eficacia tan alta ya es espectacular para una vacuna, pero en el caso de esta tecnología RNAm quizá era menos esperable. Por eso, fue una noticia tan importante y hay tanta esperanza en este tipo de vacunas. 

¿Son seguras estas vacunas?

Según se indica en la ficha técnica de la vacuna, es un medicamento sujeto a un seguimiento adicional. Su aprobación ha sido condicional porque no hay que olvidar que estamos en situación de emergencia sanitaria internacional, una pandemia que ya ha costado más de 1.800.000 muertes solo durante el año 2020. La seguridad se ha evaluado en 21.744 participantes en las fases clínicas que recibieron al menos una dosis de la vacuna. Al igual que todas las vacunas, puede producir efectos adversos leves, aunque no todas las personas los sufran. La mayoría de estos efectos leves son debidos a que la vacuna funciona, a que estimula nuestro sistema inmune. Efectos adversos leves muy frecuentes (más de 1 de cada 10 personas): dolor e hinchazón en el lugar de inyección, cansancio, dolor de cabeza, muscular, en las articulaciones, escalofríos y fiebre. Efectos frecuentes (hasta 1 de cada 10 personas): enrojecimiento en el lugar de inyección y náuseas. Efectos poco frecuentes (hasta 1 de cada 100 personas): aumento de tamaño de los ganglios linfáticos, malestar, dolor en la extremidad, insomnio, picor en el lugar de inyección. Efectos raros (hasta 1 de cada 1000 personas): parálisis temporal de un lado de la cara. Frecuencia no conocida: reacción alérgica grave. Y es que todos los medicamentos tienen efectos secundarios y suponen un riesgo. Sobre todo si tenemos en cuenta que cada uno de nosotros podemos responder de manera distinta (por eso es tan importante la medicina personalizada). No hay ningún indicio de que estas vacunas supongan un riesgo para la fertilidad. De hecho, se han realizado experimentos en animales y no se han observaron efectos relacionados en la fertilidad femenina, la gestación ni el desarrollo embrionario, fetal o de las crías.

¿Pueden modificar nuestro genoma?

Se ha dicho que estas vacunas basada en RNAm pueden modificar las funciones de nuestro genoma y causar daños desconocidos e irreparables. Sin embargo, lo cierto es que no hay ningún dato que sugiera que este tipo de vacunas pueda alterar nuestro DNA. La infección natural con coronavirus también produce millones de RNAm y no supone ningún riesgo para nuestro DNA. De hecho, jamás se ha detectado un gen de un coronavirus insertado en nuestro genoma. Como hemos dicho, la molécula de RNA es muy frágil, el tiempo que permanece en las células es muy corto y desaparece fácilmente. Además, el RNA no llega a encontrarse con el DNA: el DNA se encuentra en el núcleo de la célula y el RNAm en el citoplasma. El núcleo de la célula está rodeado de una membrana lipídica con poros por donde pueden atravesar algunas moléculas. Es cierto que algunos RNA pueden viajar al núcleo. Por ejemplo, algunos virus como el de la gripe contienen una genoma RNA que viaja hasta el núcleo de la célula, pero para eso deben asociarse a proteínas especificas con unas secuencias de aminoácidos concretas (denominadas secuencias de localización nuclear) que introducen el RNA en el núcleo.  El genoma de los coronavirus o el RNAm de la vacuna no entra de forma espontánea al núcleo, porque no se asocia a estas proteínas transportadoras. 

En el caso hipotético de que entrara en el núcleo, para integrarse en el DNA, el RNA debería convertirse antes en DNA a través de una enzima denomina retrotranscriptasa. Solo los retrovirus y los hepadnavirus (como el virus de la hepatitis B) tiene este tipo de enzimas y son capaces de hacerlo. Si no tienes esa enzima no puedes integrarte en el DNA. Pero aún hay otra posibilidad. El DNA nuclear contiene un tipo de secuencias genéticas móviles que pueden copiarse a sí mismas y pegarse en otras partes del genoma, denominadas retrotransposones. Estos “genes saltarines” son muy abundantes y alrededor de 42% del genoma humano está compuesto de este tipo de elementos. Estos retrotransposones, antes de integrarse en otro sitio del genoma, primero se convierten en RNA y después vuelven a transformarse en DNA mediante la enzima retrotranscriptasa que ellos mismos sintetizan. ¿Podría ser posible que el RNAm de la vacuna viajará al núcleo, se convirtiera en DNA y se integrará en él usando la retrotranscriptasa de estos elementos genéticos endógenos? Para que actúe la retrotranscriptasa son necesarias una secuencias específicas que no se encuentran en el RNA de la vacuna, cualquier RNA que se encuentre con una retrotranscriptasa no va a convertirse en DNA, por lo que la posibilidad de que esto ocurra, como estamos viendo, es prácticamente nula. Por último, en el hipotético caso de que el ARN de la vacuna se integrara en el genoma de una de nuestras células musculares, el efecto biológico en nuestro organismo probablemente sería nulo. Las vacunas ARN no modifican nuestro genoma porque no afectan a nuestras células germinales o gametos. En resumen, no hay ninguna evidencia científica en base a lo que conocemos sobre biología molecular que indique que el ARNm usado en las vacunas frente a la COVID-19 pueda tener la capacidad de alterar nuestro genoma

Quedan preguntas pendientes

No se ha evaluado la eficacia, la seguridad ni la inmunogenicidad de la vacuna RNAm de Pfizer/BioNtech en personas inmunodeprimidas, incluidas aquellas que estén recibiendo tratamiento inmunosupresor, ni en menores de 16 años. Se desconoce la duración de la protección proporcionada por la vacuna. Como con cualquier vacuna, puede no proteger a todas las personas que reciban la vacuna. No se han realizado estudios de interacciones con otros medicamentos o con otras vacunas. La experiencia en mujeres embarazadas es limitada, y se desconoce si se excreta en la leche materna. El impacto de la vacunación en la propagación del virus a nivel comunitario se desconoce todavía. No se sabe aún en qué grado las personas vacunadas pueden ser portadoras del virus y propagarlo.

Es verdad que todavía no tenemos datos de posibles efectos a largo plazo, sencillamente porque no ha dado tiempo. Por todo esto, ahora comienza lo que se denomina la fase IV de farmacovigilancia en la que se sigue evaluando la seguridad (posibles efectos secundarios muy poco frecuentes que es imposible detectar con miles de voluntarios pero que se ponen de manifiesto cuando se prueba en millones de personas), y su efectividad (si realmente funciona en el control de la epidemia).  Por eso, no nos debería extrañar que, como ocurre con otros medicamentos, alguna vacuna pueda llegar a retirarse del mercado posteriormente, si se detecta que no es segura o efectiva.

Hay que recordar que las agencia evaluadoras valoran también el riesgo-beneficio: el beneficio de la vacuna debe ser razonablemente mayor que el riesgo del coronavirus. Uno debería valorar qué prefiere: más de 74.000 muertos que está dejando el coronavirus y sus “efectos colaterales” en España o algún posible efecto secundario grave por la vacuna. La probabilidad de que te contagies con SARS-CoV-2, de que enfermes y tenga consecuencias graves e incluso mortales y de que contagies a otros, es mayor que los posibles efectos secundarios que pueda tener la vacuna. Nos enfrentamos a un virus silencioso y peligroso, para el que la población no está previamente inmunizada, que se transmite por el aire vía aerosoles, que puede ser transmitido por personas antes de presentar los síntomas e incluso por personas que nunca manifestarán síntomas y cuya dosis infectiva probablemente sea muy baja. En 2020, este virus ha causado más de 74 mil muertos solo en España, se han cerrado colegios y universidades, ha destrozado miles de empleos y hundido nuestra economía, ha modificado nuestras costumbres, miles de personas han perdido a sus seres queridos sin poderse siquiera despedir. Podemos esperar varios años mientras seguimos ensayando las vacunas y analizando su efecto a muy largo plazo, pero no parece lo más razonable.  

La tecnología RNAm, una nueva revolución en biomedicina

Si durante los próximas meses se confirma la seguridad a largo plazo y la efectividad de las vacunas RNAm para controlar la pandemia, me atrevo a augurar una nueva revolución en la biomedicina. Se podrán diseñar y optimizar nuevas vacunas en un ordenador, fabricarlas bajo demanda en un tiempo récord y a bajo coste. Se podrán diseñar vacunas múltiples contra varios patógenos al mismo tiempo, en una sola preparación. Estaremos así mucho mejor preparador para la próxima pandemia. Y se podrá avanzar hacia tratamientos personalizados contra otras enfermedades como el cáncer. Una tecnología que puede cambiar la medicina actual, un mensaje de esperanza. 

(*) El DNA está compuesto por una secuencia de cuatro bases nitrogenadas: adenina (A), guanina (G), citosina (C) y timina (T). En el RNA se sustituya la timina por el uracilo (U).

(**) Un codón es un triplete de nucleótidos. En el código genético, a cada uno de los codones le corresponde un aminoácido. Hay 64 codones diferentes por combinación de los cuatro nucleótidos (A, G, C, U) en cada una de las tres posiciones del triplete, de los cuales se codifican 20 aminoácidos, tres codones de terminación de la traducción y un codón de inicio de la traducción. Los aminoácidos pueden estar codificados por 1, 2, 3, 4 ó 6 codones diferentes. Hay, por tanto, varios codones diferentes que codifican para un solo aminoácido. 

Fuentes:

- mRNA vaccines - a new era in vaccinology. Pardi N, Hogan MJ, Porter FW, Weissman D. Nat Rev Drug Discov. 2018 Apr;17(4):261-279. doi: 10.1038/nrd.2017.243.

- Messengers of hope. Nat Biotechnol. 2020. https://doi.org/10.1038/s41587-020-00807-1


- No, las vacunas de ARN frente a la COVID-19 no modifican nuestro genoma. JM Jiménez Guardeño, AM Ortega-Prieto. The Conversation. 13/12/2020.