sábado, 25 de julio de 2020

La ciencia ante el desafío de la #COVID19 (DÍA 3)


La enfermedad

Margarita del Val, Investigadora del Centro de Biología Molecular Severo
Ochoa-CSIC, es coordinadora de la Plataforma Temática Interdisciplinar en Salud Global del CSIC que coordina los proyectos relacionados con la COVID19. 


En condiciones normales, ante una infección primero se activa una respuesta innata inflamatoria inespecífica que luego va poco a poco disminuyendo y acaba disparando una respuesta adaptativa especifica. Lo importante para un virus es que se transmita muy bien. En los virus nos podemos encontrar desde algunos que se multiplican muy rápido, son muy citopáticos y tienen una fase extracelular muy marcada, hasta los que son más lentos, menos citopáticos y tienen una fase intracelular más extensa. Contra los primeros son muy importantes la acción de los anticuerpos neutralizantes (la inmunidad humoral) que bloquean al virus en el exterior y evitan la transmisión. Contra los segundos, la inmunidad celular (basada en linfocitos T) es esencial, las células citotóxicas que matan a las células infectadas. Obviamente, con frecuencia lo que ocurre es una graduación entre ambas situaciones extremas. Además hay que tener en cuenta el papel que juegan las células de memoria que es esencial para la respuesta secundaria ante una infección posterior, memoria que puede durar años e incluso décadas. Por tanto, en la lucha contra los virus es fundamental la respuesta de anticuerpos y la inmunidad celular.

Además, la respuesta inmune depende de factores genéticos ligados al sexo. Hay diferencias en el nivel de expresión de los genes del sistema inmune entre hombres y mujeres. Esas diferencias son mayores a partir de los 65 años. Por ejemplo, los hombres tienen una respuesta proinflamatoria mayor que las mujeres, éstas son más propensas a las enfermedades autoinmunes, pero responde mejor a las infecciones con la edad, lo contrario que los hombres. Esto puede ser una de las causas de la diferencia de mortalidad por la COVID19 entre mujeres y hombres de mayor edad. También hay que tener en cuenta que la producción de anticuerpos, por ejemplo, es muy diferente entre personas, lo que puede explica la variabilidad de los resultados de seroprevalencia.

Respecto a la inmunidad colectiva hay que tener en cuenta que, entre otras cosas, depende de la capacidad de transmisión del virus: para el sarampión, con una tremenda capacidad de transmisión, esa inmunidad colectiva o de grupo se consigue cuando la inmunidad alcanza el 95%, en el caso del SARSCoV2 con el 60-70%. El escudo de la inmunidad colectiva solo te protege mientras estás dentro de ese ambiente o grupo concreto. Si una persona sale de ese grupo, ya no hay protección. Por ejemplo, algunas residencias de ancianos han alcanzado una inmunidad del 70%, ya tienen inmunidad de grupo. Pero esa protección no funciona si la persona sale del grupo (un anciano que abandona la residencia) o un extraño entra al grupo (visitas de fuera).

Se ha descrito que algunas personas infectadas dejan de ser seropositivos con el tiempo: al cabo de tres-cuatro meses casi el 50% pueden perder los anticuerpos. ¿Cómo interpretamos ese resultado?
i) Ya sabíamos que la inmunidad frente a los coronavirus catarrales era duradera pero no óptima. 
ii) Los anticuerpos son una parte de la inmunidad pero es no la única, es la más fácil de medir. La inmunidad celular no se mide fácilmente. Después de una infección, tenemos linfocitos B de memoria que se podrán activar ante un segundo estímulo y producir anticuerpos de una afinidad más alta.
iii) Ya existen otras infecciones en las que los anticuerpos no duran mucho, otros coronavirus catarrales o las infecciones por papilomavirus.
iv) Las reinfecciones por coronavirus catarrales son más benignas que la primera infección, o sea que la inmunidad protege.
v) Las vacunas pueden mejorar la inmunidad que se obtiene por la infección natural. Vacunas bien diseñadas pueden activar la inmunidad adaptativa y celular.

Por tanto, perder la detección de anticuerpos no es grave, el coronavirus no causa una deficiencia inmune progresiva, como el VIH, hay inmunidad celular. Pero, ¡ojo!, aunque la segunda infección sea más leve, la persona sigue siendo infecciosa y puede transmitir el virus, por eso NO TIENE SENTIDO el pasaporte inmunitario.

Aunque la inmunidad celular es más difícil de estudiar que la respuesta de anticuerpos, hay algunos estudios muy interesantes que sugieren que algunas personas infectadas por SARSCoV2 no generan anticuerpos pero sí tienen una inmunidad celular, y pueden estar protegidos (aunque sean contagiosos): se puede no tener anticuerpos y estar protegido. En otros estudios con muestras de personas no expuestas a la COVI19 y que no tienen anticuerpos, sí se ha encontrado cierta inmunidad celular contra el SARSCoV2 por exposición quizá a otros coronavirus catarrales, ¿qué papel o impacto puede tener esto?, ¿la exposición previa a otros coronavirus protege? ¿contribuye esto a la alta cantidad de asintomáticos? Todavía no lo sabemos.

Julio Mayol, Director Médico del Hospital Clínico San Carlos, da una perspectiva clínica de la COVID-19. Sabíamos que esto iba a pasar, pero no nos lo queríamos creer. Se pensaba que las pandemias solo afectaban a los países pobres y se llegó tarde. El problema de la toma de decisiones: si sobreactúas y no ocurre nada (como con la pandemia de gripe de 2009) eres criticado, pero si actúas tarde puedes causar una hecatombe. En estos casos siempre es mejor sobreactuar: salva vidas.


El diagnóstico de la COVID919 no solo se basa en las pruebas de microbiología, en la PCR. El diagnóstico tiene en cuenta muchos más otros datos clínicos, analíticos, microbiológicos, radiológicos, … Así, ha habido casos con diagnóstico COVID19 y PCR positiva y también casos COVID19 pero con PCR negativa, aunque estos últimos eran en general menos graves. Algunos datos clínicos: el 80% de los COVID19 tenían fiebre, en personas mayores era frecuente la anemia y linfopenia, la mortalidad a 30 días en menores de 40 años era de 0,4, pero de hasta el 47% en mayores de 85. Datos de UCI: han fallecido muchos más hombres que mujeres (72% versus 25%), antecedentes de hipertensión (68%), obesidad (36%), diabetes (33%), cardiopatías (18%), EPOC (18%), tabaquismo (11%), hipotiroidismo (7%). En muchos casos la COVID19 ha sido más que una neumonía, ha sido una enfermedad sistémica.


Por último, un servidor ha hablado del cambio que ha supuesto la pandemia en la comunicación de la ciencia. En poco más de un mes conocemos más del SARSCoV2 y de la COVID19 que de otras enfermedades en lustros. Este exceso de información científica, que ni siquiera la comunidad científica es capaz de asimilar, junto con la nueva realidad de un mundo hiperconectado a través de las redes sociales, ha generado una auténtica pandemia de información: infodemia. Esto ha generado problemas de informaciones erróneas, falsas, bulos y malas interpretaciones. La comunicación en tiempos de crisis debe basarse en la confianza, transparencia, claridad, sencillez y rigor. Ahí es donde el papel de la comunicación y divulgación de la ciencia tiene un papel esencial.


Mi agradecimiento a Victor J Cid por permitirme co-dirigir este Curso de Verano con él, ha sido un honor y un placer: ¡gracias!

Todos los comentarios escritos en esta entrada del blog son responsabilidad personal mía y no deben ser tomados como citas literales de los participantes en el curso. Puede haber errores de interpretación que asumo personalmente.

Ya está disponible en YouTube el vídeo del tercer día:


viernes, 24 de julio de 2020

La ciencia ante el desafío de la #COVID19 (DÍA 2)

Diagnóstico, tratamiento y vacunas


Lluis Montoliu, investigador del Centro Nacional de Biotecnología (CNB-CSIC) ha explicado los últimos avances en la aplicación de la tecnología CRISPR al diagnóstico virológico del SARSCoV2


Ha comenzado contando el descubrimiento de CRISPR, con una mención obligaba a Francis Mojica, la variabilidad de los distintos sistemas CRISPR y su tremenda versatilidad. La versión 1.0 de CRISPR han sido herramientas genéticas para detectar, cortar y editar secuencias de ADN, pero desde el año 2017 se han ido desarrollando nuevas versiones de CRISPR (versión 2.0) capaces de cortan ARN de forma inespecífica y con nuevas aplicaciones. Bajo distintos acrónimos, cada uno más curioso, se han ido desarrollado nuevos sistemas basados en diferentes tipos de proteínas Cas que se están aplicando para la detección de secuencias virales. Por ejemplo, los sistemas SHERLOCK (CRISPR-Cas13a) que permite ARN con una sensibilidad a nivel atomolar; DETECTR (CRISPR-Cas12a) para cortar ADN de cadena sencilla; CARMEN que combina el sistema SHERLOCK con tecnología microfluídica de nanogotas para ensayos masivos; CONAN (CRISPR-Cas3) capaz de cortar ADN de forma inespecífica. Estos sistemas permiten desarrollar métodos de detección de virus sencillos y rápidos tipo “point of care”.

En comparación con el diagnóstico por RT-PCR, el sistema CRISPR DETECTR, en concreto, es más rápido (menos de 30 minutos) y sencillo, (solo necesitan reactivos, pipetas y un termobloque), aunque son menos sensible y no es cuantitativo. Por ello, DETECTR puede ser un método excelente de cribado poblacional. Aunque todavía no se pueden comercializar, el pasado 8 mayo la FDA norteamericana aprobó su uso de emergencia como sistema de detección. Por otra parte, la capacidad del sistema CRISPR-Cas13d de cortar el ARN viral se está ensayando como posible antiviral. Obviamente, uno de los retos es asegurar la especificidad del sistema y que solo destruya el genoma del coronavirus y no otros ARN celulares.  

Víctor J. Cid, Catedrático de Microbiología de la Facultad de Farmacia de la Universidad Complutense de Madrid ha presentado un resumen de la investigación y desarrollo de los tratamientos frente al COVID-19. Aunque de momento no existe ningún tratamiento especifico, a día de hoy hay ya 2749 ensayos clínicos en curso (Referencia). Aunque existen diversas estrategias, muchos de los ensayos se basan en reposicionar fármacos ya empleados para otras funciones, basándose en lo que se va conociendo sobre la biología y replicación del virus y sobre su efecto en nuestras células.


- Inhibir y neutralizar la fase de unión del virus a la célula, a través de la proteína S que se une al receptor celular ACE2 y necesita la acción de determinadas proteasas celulares, como la furina: lectinas que unen azucares para bloquear la espícula S, anticuerpos monoclonales o suero de personas convalecientes (sueroterapia), administración del receptor ACE2, inhibidores de la furina, …
- Fase de fusión de la envoltura del virus y las membranas celulares, que depende de otras proteasas celulares como la TMPRSS2 y de una bajada de pH: inhibidores de las proteasa celulares, compuestos lisosomotrópicos que inhiben el pH, …
- Fase de expresión del ARN, síntesis de poliproteinas y procesamiento posterior: inhibidores de las proteasa virales, …
- Fase de replicación: inhibidores de la RNA polimerasa, helicasa, metiltransferasa viral, …
- Otros fármacos como antiinflamatorios: corticoides, antioxidantes e
distintos inhibidores de la interleuquinas 6, interferones, lactoferrina, ivermectina, etc …

Luis Enjuanes, Profesor de Investigación del CNB-CSIC ha explicado el efecto del cambio climático en la distribución de los virus, con ejemplos concretos de virus transmitidos por mosquitos (arbovirus) como el cambio en la distribución mundial del virus de la lengua azul, el zika o el virus del Nilo Occidental. Respecto a los coronavirus, ha explicado que todos proceden de murciélagos. El paso al ser humano ha ocurrido a través de distintos animales intermediarios, las civetas en el caso del SARCoV1 o los camellos en el caso del MERS (Las civetas de granja se consumen como delicatesen en China, y la leche y orina de camella se beben en Oriente Medio). En el caso del SARSCoV2 sabemos que su origen son también los murciélagos pero todavía no está claro el animal intermediario (se ha sugerido el pangolín y las serpientes, pero no es definitivo).


Probablemente, las cuatro características que hacen que el SARSCoV2 sea un virus muy fácil de diseminarse y de difícil control sean: la presencia del virus en personas asintomáticas que lo pueden transmitir, su enorme capacidad de infectar distintos tipos celulares y causar distintas patologías (en pulmón, intestino, riñón, cerebro, corazón, vasos sanguíneos, páncreas, …), su capacidad de inducir una respuesta inmune limitada, y la reemergencia en un 14% de los infectados en pacientes “recuperados”.

Respecto a la vacuna que se está desarrollando en su laboratorio, han caracterizado los genes de virulencia, esenciales para la patogenicidad del virus. Han reconstruido de forma artificial el genoma del virus, sintetizando fragmentos del genoma y ensamblándolos para generar un cromosoma artificial. Esto les permite obtener una colección de mutantes en los que le faltan desde uno, hasta cinco genes de virulencia (genes 3, 4a, 4b, 5, E). En modelos con SARSCoV1 y MERS, demostraron que estos mutantes no eran virulentos, el virus no se propagaba en las células pero el ARN era capaz de replicarse. No son, por tanto, auténticos virus sino fragmentos de ARN replicantes, replicones. Estos replicones eran capaces de proteger al 100% de los ratones infectados con el virus, actuando como vacunas. Están trabajando en dos prototipos: un basado en nanopartículas como vehículo del ARN replicon y otro en VLPs.




Juan García Arriaza, Investigador Contratado del CNB-CSIC que trabaja en el laboratorio de Mariano Esteban, ha explicado el desarrollo de una vacuna preventiva frente a COVID-19 basada en poxvirus recombinantes. Utilizan como vector el virus vaccinia Ankara modificado (MVA). Se trata de un vector basado en el virus vaccinia que, tras más de 500 pases en el laboratorio, ha ido perdiendo los genes de virulencia, está muy atenuado y no es capaz de replicarse en células humanas, es por tanto muy seguro. Además, tiene otras ventajas: flexibilidad, permite incluirle otros genes; es muy inmunogénico; de fácil de administración y bajo coste de producción. Es un vector ideal, que ya se ha utilizado como vacuna contra la malaria, la tuberculosis, cáncer y otras infecciones virales. En el caso de SARSCoV2, están ensayando dos prototipos de vacunas MVA que expresan la proteína S del coronavirus. En modelo de ratón, las vacunas producen una potente y duradera respuesta humoral (de anticuerpos neutralizantes) y celular (respuesta de alta calidad con distintos tipos de citoquinas). Ahora está pendiente repetir en otros modelos animales (hámster y primates no humanos), y comenzar las fases clínicas (plan previsto: fase I en diciembre 2020, II en marzo-abril 2021 y III en verano 2021).


Adolfo García-Sastre, Co-director del Global Health & Emerging Pathogens Institute y del Icahn School of Medicine at Mount Sinai en Nueva York, ha explicado su estrategia para buscar antivirales frente al SARSCoV2, en colaboración con otros equipos. Su trabajo consiste en buscar posibles inhibidores de las interacciones entre el virus y las proteínas humanas. Para ello se ha basado en estudios de las interacciones entre las proteínas del virus y las proteínas humanas (el interactoma) y en los cambios de fosforilación de las proteínas humanas inducidos  por el virus (el fosfoproteoma). Han seleccionado y probado más de 400 compuestos distintos, y han encontrado compuestos sin efecto, con efecto antiviral, en incluso con efecto proviral, in vitro en cultivo celular. El siguiente paso son los estudios en modelos animales y la terapias de combinación. Un compuesto que destaca por su actividad antiviral in vitro es la Aplidina de PharmaMar, que ya ha comenzado los ensayos clínicos.


La mesa redonda se centrado sobre vacunas y se ha unido María Jesús Lamas, Directora de la Agencia Española de Medicamentos y Productos Sanitarios. Algunos comentarios que se han hecho:

Nos interesan vacunas cuanto antes, pero seguras, según cuatro principios básicos: i) no hacer el mal, que lo que se haga no cause otros efectos, ii) hacer el bien, que protejan, iii) información y consentimiento de las personas, iv) que estén a disposición de todo el mundo que lo necesite.

Las prisas no pueden ser excusas para saltarse estos requisitos, se trata de acelerar los pasos pero no saltarse ningún paso, por eso las agencias reguladoras. No se suprimen fases, se solapan. Se están empleando vectores en los que ya había mucha experiencia, regulación y autorizaciones para otros antígenos (adenovirus, poxvirus, …), por eso se va más rápido. Se ha acelerado el proceso de obtención de la vacuna también porque ha habido un aumento de inversión sin precedentes. Habrá varios tipos de vacunas, para distintos usos, distintas edades, se necesitan vacunas que se puedan fabricar y distribuir de forma rápida, que sean seguras y que funcionen, aunque no sean las propuestas más sofisticadas y mejores. Y sin perder la confianza de la población para no favorecer los movimientos antivacunas, por eso es importante la transparencia. Solo se van autorizar vacunas por criterios científicos, se va a ser tan rigurosos como si el desarrollo hubiera llevado 10 años. Se es más exigente en la autorización de vacunas que de cualquier medicamento. Otros medicamentos se administran a personas enfermas, las vacunas, en principio, se administran a personas sanas. Se aprueban según la relación beneficio-riesgo: no hay riesgo cero. Después de su aprobación se sigue con una fase IV de farmacovigilancia, cuando se emplean en cientos de miles de personas muy diferentes. En España tenemos el conocimiento, pero falta cooperación y capacidad de ensayos en primates y de producción.

Todos los comentarios escritos en esta entrada del blog son responsabilidad personal mía y no deben ser tomados como citas literales de los participantes en el curso. Puede haber errores de interpretación que asumo personalmente.

Ya está disponible en YouTube el vídeo del segundo día:


jueves, 23 de julio de 2020

La ciencia ante el desafío de la #COVID19 (DÍA 1)

SARSCoV2: impacto en la salud de un nuevo virus pandémico



Un buen grupo de alumn@s asistentes al Curso de Verano "La ciencia ante el desafío de la COVID19", del 22 al 24 de julio de 2020 en El Escorial.

La primera intervención ha sido de Albert Bosch, presidente de la Sociedad Española de Virología (SEV) y director del Laboratorio de Virus Entéricos de la Universidad de Barcelona.


Ha explicado su investigación sobre la detección de virus en aguas residuales. Hay virus que se transmiten por heces en humanos (transmisión fecal-oral), como los enterovirus, polio, hepatitis A y E, norovirus, rotavirus, adenovirus, … Normalmente son virus desnudos, sin envoltura, muy estables en el ambiente.  Pero también hay otros virus, que no se trasmiten por vía fecal-oral, pero que puede ser excretados por la heces en humanos, como influenza, coronavirus, ébola, ... Estos suelen ser virus rodeados con una envoltura lipídica, más frágiles y menos estables en el ambiente. El SARSCoV2 aunque pierde su infectividad en el tracto intestinal, es excretado en las heces (en biología siempre hay excepciones, y hay al menos un par de artículos que describen algún caso de virus recuperados a partir de heces que seguían siendo infecciosos). Sabemos que el virus puede resistir en superficies desde unas pocas horas en aluminio hasta varios días en plásticos (Referencias 1 y 2), y que pueden inactivarse fácilmente con alcohol, lejía, luz UV-C, altas temperaturas y en algunos rangos de pH. El tratamiento con ozono no es efectivo para reducir o inactivar el coronavirus.

Teniendo en cuenta todo esto, en su laboratorio han puesto a punto una técnica de concentración de aguas residuales y detección de virus por RT-PCR. Han analizado muestras de dos estaciones de depuración de aguas residuales del área de Barcelona, que representan a unos 5 millones de personas. Han empleado como dianas para la RT-PCR cinco regiones del SARSCoV2 (los genes IP2, IP4, E, N1, N2 -las tres primeras dianas han funcionado mejor-). Fueron capaces de detectar el virus en muestras del 31 de marzo de 2020. En un estudio retrospectivo con muestras congeladas detectaron el primer positivo el 15 de marzo. El primer caso confirmado en Barcelona es del 15 de febrero, lo que demuestra que esta técnica es muy útil y sensible para la detección temprana del virus, antes incluso de que se manifieste de forma clínica (Referencia)

El análisis de las aguas residuales es un buen sistema de alerta temprana y predicción de la presencia del virus

Además, se correlaciona la detección del virus con las épocas de confinamiento (no se detecta) y con la desescalada (vuelve a detectarse). Curiosamente, en su estudio con la colección de muestras congeladas fueron capaces de obtener un resultado positivo en una muestra del 12 de marzo de 2019, con todos los controles adecuados. Desgraciadamente no fue posible secuenciar el fragmento amplificado. En Italia ya se había detectado el virus en muestras ambientales en diciembre 2019, varios meses antes de que se detectaran los primeros casos clínicos en ese país. Todo esto lo que pone de manifiesto es la importancia de esta técnica y que no podemos descartar que en los próximos meses aparezcan datos similares que demuestren circulación del virus mucho antes de los primeros casos detectados a finales de diciembre de 2019 en China.

Por su parte, Pedro Alonso, Director del Programa Mundial de Malaria de la OMS, nos ha hablado del desafío que supone la pandemia de COVID19 en el contexto de la salud global, una interesante charla que yo me permito titular como “De los brotes de mi pueblo a la visión global”. Repasando la historia de otras pandemias, vemos como la COVID19 no es nada nuevo, y que nos enfrentamos a los mismos retos que otras veces. A diferencia de otras enfermedades, como las cardiovasculares, neurodegenerativas o el cáncer, solo las enfermedades infecciosas pueden causar una disrupción global, un caos total y cambiar el rumbo de la historia de la humanidad.


Comparación entre malaria en 1914, gripe en 1918, y COVID19 en 2020.

Alonso ha explicado que la declaración de Emergencia Sanitaria Mundial (que hizo la OMS el 30 de enero) es en realidad la máxima calificación de emergencia posible. Es por tanto un hecho más relevante e importante que la declaración de Pandemia (que se hizo el 11 de marzo), ya que “Pandemia” solo hace referencia a su distribución global. Los datos muestran que a nivel global la pandemia se está acelerando y que quizá solo estamos al principio


(Fuente: OMS)

Es muy preocupante lo que pueda pasar en África, donde podemos estar al principio de una hecatombe, no solo por las muertes directas que cause el coronavirus sino por las muertes indirectas debidas a la disrupción del sistema sanitario. Preocupa cómo afectará la pandemia a otros programas de salud global, cómo se comportará como un cofactor junto con malaria, VIH y tuberculosis. Según algunos modelos predictivos, se estima que el número de muertes por malaria aumenten al doble como consecuencia indirecta de la pandemia, que puede causar el colapso del sistema sanitario, disminuir el acceso a la atención médica, o simplemente reducir la asistencia al centro sanitario, algo que puede tener consecuencias desastrosas en África. En la epidemia de ébola de 2014 al final falleció más gente por el aumento del número de casos de malaria que por el virus ébola.

Las enfermedades infecciosas, a diferencia de las cardiovasculares, neurodegenerativas o el cáncer, pueden causar una disrupción global

Durante la mesa redonda se ha unido al debate José Manuel Echevarría, Ex-Director del Área de Virología del Centro Nacional de Microbiología del Instituto de Salud Carlos III. 


En la mesa, de izquierda a derecha: JM Echevarría, Victor J Cid, Pedro Alonso. En pantalla: Albert Bosch.

Algunas ideas que se han comentado han sido:
i) Los virus respiratorios no desaparecen en verano, baja su circulación, pero no desaparecen.
ii) El estudio de seroprevalencia en España ha sido modélico, pero ¡ojo! no tiene en cuenta la importancia de la inmunidad celular, que todavía no está clara.
iii) Falta una definición clara y común sobre qué es un caso de COVID19, para que no haya polémica con las datos, y existe un problema para comparar los datos de distintos partes del mundo e incluso dentro de España. Se necesitan soluciones técnicas para el manejo y análisis de los datos.
iv) Sobre el origen del SARSCoV2, no hay duda de su origen natural, no es fruto de la ingeniería genética y es probable que circulara mucho antes de diciembre de 2019 de forma asintomática. Es un virus respiratorio muy bien adaptado al ser humano, no como el SARSCoV1, lo que sugiere que lleva con nosotros de forma natural mucho tiempo.
v) ¿Qué puede ocurrir en el futuro? Quizás (es más una esperanza que una certeza) en un año y medio o dos años se consiga cierta inmunidad de grupo que junto con alguna vacuna, haga que la COVID19 acabe siendo un virus respiratorio más de la lista de virus que nos visitan todos los años, con una cuota de mortalidad “aceptable” socialmente, no como ahora. ¿Qué hacer mientras para gestionar este proceso? Dudas.


Todos los comentarios escritos en esta entrada del blog son responsabilidad personal mía y no deben ser tomados como citas literales de los participantes en el curso. Puede haber errores de interpretación que asumo personalmente.

Ya está disponible en YouTube el vídeo del primer día:


jueves, 9 de julio de 2020

LA CIENCIA ANTE EL DESAFÍO DE LA COVID-19

Virus, epidemiología, diagnóstico, vacunas, tratamientos, clínica, control, prevención y comunicación sobre SARS-CoV-2 y COVID-19

Curso de Verano de la U. Complutense de Madrid 



MIÉRCOLES, 22 de julio

10:00 h Inauguración
Juan C. Doadrio Villarejo. Vicerrector Relaciones Institucionales UCM
Sergio Rodríguez Márquez. Director General Pfizer España
Víctor J. Cid e Ignacio López Goñi. Directores del curso

10:20 h SARS-CoV-2. Impacto en la salud de un nuevo virus pandémico

Albert Bosch Navarro. Presidente de la Sociedad Española de Virología.
SARS-CoV-2, un nuevo reto para la investigación en virología.

Pedro Alonso. Director del Programa Mundial de Malaria de la Organización
Mundial de la Salud.
COVID-19: un desafío en el contexto de la salud global.

16:00 h Mesa Redonda: Virus Emergentes y Salud Global

Modera: Ignacio López-Goñi
Participan: Albert Bosch Navarro; Pedro Alonso ; José Manuel Echevarría.
Profesor Honorífico, Facultad de Biología, UCM. Ex-Jefe de Área de Virología
del Centro Nacional de Microbiología, Instituto de Salud Carlos III


JUEVES, 23 de julio

09:40 h Diagnóstico y tratamiento

Lluis Montoliu. Investigador del Centro Nacional de Biotecnología (CNB-CSIC).
State-of-the-art y desarrollo de nuevas tecnologías: aplicación de la tecnología CRISPR al diagnóstico virológico.

Víctor J. Cid. Catedrático de Microbiología. Facultad de Farmacia. Universidad
Complutense de Madrid.
Tratamientos frente al COVID-19: Investigación y Desarrollo.

11:30 h Vacunas frente al SARS-CoV-2, una carrera contra el tiempo

Luis Enjuanes. Profesor de Investigación del CNB-CSIC
Vacunas Made in Spain. Atenuación dirigida del SARS-CoV-2.

Juan García Arriaza. Investigador Contratado del CNB-CSIC.
Desarrollo de una vacuna preventiva frente a COVID-19 basada en poxvirus
recombinantes.

Adolfo García-Sastre. Co-director del Global Health & Emerging Pathogens Institute y del Icahn School of Medicine at Mount Sinai en Nueva York.
A la búsqueda de antivirales frente al SARS-CoV-2 (Videoconferencia).

16:00 h Mesa Redonda: Perspectivas en la prevención y control de la pandemia de COVID-19

Modera: Ignacio López Goñi. 
Participan: Luis Enjuanes; Juan García; Arriaza; Lluis Montoliu ; María Jesús Lamas. Directora de la Agencia Española de Medicamentos y Productos Sanitarios.

VIERNES, 24 de julio

09:30 h Aspectos patológicos del SARS-CoV-2 y su relación con el sistema
inmunitario

Margarita del Val. Investigadora del Centro de Biología Molecular Severo
Ochoa-CSIC.
El sistema inmunitario frente al SARS-CoV-2: ¿aliado o enemigo?

Julio Mayol. Director Médico del Hospital Clínico San Carlos
COVID-19, una perspectiva clínica

12:00 h Ignacio López-Goñi. Catedrático de Microbiología. Universidad de Navarra.
La comunicación científica durante la crisis pandémica.

Clausura

Matricula AQUI